首页> 外文期刊>Nuclear fusion >Overview of recent Alcator C-Mod research
【24h】

Overview of recent Alcator C-Mod research

机译:Alcator C-Mod最新研究概述

获取原文
获取原文并翻译 | 示例
       

摘要

Research on the Alcator C-Mod tokamak [1] is focused on high particle- and power-density plasma regimes to understand particle and energy transport in the core, the dynamics of the H-mode pedestal, and scrape-off layer and divertor physics. The auxiliary heating is provided exclusively by RF waves, and both the physics and technology of RF heating and current drive are studied. The momentum which is manifested in strong toroidal rotation, in the absence of direct momentum input, has been shown to be transported in from the edge of the plasma following the L-H transition, with timescale comparable to that for energy transport. In discharges which develop internal transport barriers, the rotation slows first inside the barrier region, and then subsequently outside of the barrier foot. Heat pulse propagation studies using sawteeth indicate a very narrow region of strongly reduced energy transport, located near r/a = 0.5. Addition of on-axis ICRF heating arrests the buildup of density and impurities, leading to quasi-steady conditions. The quasi-coherent mode associated with enhanced D-Alpha (EDA) H-mode appears to be due to a resistive ballooning instability. As the pedestal pressure gradient and temperature are increased in EDA H-mode, small ELMs appear; detailed modelling indicates that these are due to intermediate n peeling-ballooning modes. Phase contrast imaging has been used to directly detect density fluctuations driven by ICRF waves in the core of the plasma, and mode conversion to an intermediate wavelength ion cyclotron wave has been observed for the first time. The bursty turbulent density fluctuations, observed to drive rapid cross-field particle transport in the edge plasma, appear to play a key role in the dynamics of the density limit. Preparations for quasi-steady-state advanced tokamak studies with lower hybrid current drive are well underway, and time dependent modelling indicates that regimes with high bootstrap fraction can be produced.
机译:Alcator C-Mod托卡马克[1]的研究重点在于高粒子密度和功率密度的等离子体机制,以了解核心中的粒子和能量传输,H模式基座的动力学以及刮除层和偏滤器物理。辅助加热仅由射频波提供,并且研究了射频加热和电流驱动的物理和技术。在没有直接动量输入的情况下,表现为强环形旋转的动量已被证明是在L-H跃迁之后从等离子体的边缘传输进来的,其时间尺度与能量传输相当。在形成内部运输障碍物的排放物中,旋转首先在障碍物区域内变慢,然后在障碍物脚的外部变慢。使用锯齿的热脉冲传播研究表明,能量传输的非常狭窄的区域非常狭窄,位于r / a = 0.5附近。附加的同轴ICRF加热可阻止密度和杂质的积聚,从而导致准稳态条件。与增强的D-Alpha(EDA)H模式相关的准相干模式似乎是由于电阻膨胀的不稳定性所致。在EDA H模式下,随着基座压力梯度和温度的升高,出现了较小的ELM。详细的建模表明,这是由于中间的n个剥离-气球模式造成的。相衬成像已被用于直接检测由等离子体核心中的ICRF波驱动的密度波动,并且首次观察到模式转换为中波长离子回旋波。观察到的突发湍流密度波动在边缘等离子体中驱动了快速的跨场粒子传输,似乎在密度极限的动力学中起关键作用。具有较低混合电流驱动的准稳态高级托卡马克研究的准备工作正在进行中,并且与时间有关的建模表明可以产生具有高自举率的方案。

著录项

  • 来源
    《Nuclear fusion》 |2003年第12期|p. 1610-1618|共9页
  • 作者单位

    Massachusetts Institute of Technology, Cambridge, MA, USA;

    Massachusetts Institute of Technology, Cambridge, MA, USA;

    General Atomics, San Diego, CA, USA;

    Massachusetts Institute of Technology, Cambridge, MA, USA;

    Massachusetts Institute of Technology, Cambridge, MA, USA;

    University Texas, Austin, TX, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN, USA;

    Massachusetts Institute of Technology, Cambridge, MA, USA;

    Massachusetts Institute of Technology, Cambridge, MA, USA;

    Massachusetts Institute of Technology, Cambridge, MA, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子核物理学、高能物理学;
  • 关键词

  • 入库时间 2022-08-18 00:50:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号