首页> 外文期刊>Nonlinear Differential Equations and Applications NoDEA >A pointwise constrained version of the Liapunov convexity theorem for single integrals
【24h】

A pointwise constrained version of the Liapunov convexity theorem for single integrals

机译:单积分的Liapunov凸定理的逐点约束形式

获取原文
获取原文并翻译 | 示例

摘要

Given any AC solution ({overline{x} : [a,b] rightarrow mathbb{R}^{n}}) to the convex ordinary differential inclusion $$x^{prime} ( t) in co{v^{1} ( t), ldots, v^{m} ( t)} qquad a.e. on [ a,b], qquad qquad (^{*})$$we aim at solving the associated nonconvex inclusion $$x^{prime} ( t) in {v^{1} ( t), ldots, v^{m} ( t)} qquad a.e.,x( a) = overline{x} ( a), x( b) = overline{x} ( b), qquad qquad (^{**})$$under an extra pointwise constraint (e.g. on the first coordinate): $$x_{1} ( t) leq overline{x}_{1} ( t) qquad forall t in [ a,b]. qquad qquad qquad (^{***})$$While the unconstrained inclusion (**) had been solved already in 1940 by Liapunov, its constrained version, with (***), was solved in 1994 by Amar and Cellina in the scalar n = 1 case. In this paper we add an extra geometrical hypothesis which is necessary and sufficient, in the vector n > 1 case, for it existence of solution to the constrained inclusion (**) and (***). We also present many examples and counterexamples to the 2 × 2 case. Mathematics Subject Classification (2010) Primary 28B05 Secondary 34A60 Keywords Liapunov convexity theorem for single integrals Nonconvex differential inclusions Pointwise constraints Convexity of the range of vector measures The research leading to this paper was performed at: Cima-ue (Math Research Center of Universidade de Évora, Portugal) with financial support from the research project PEst-OE/MAT/UI0117/2011, FCT (Fundação para a Ciência e a Tecnologia, Portugal); and its resulting applications have been presented by A. Ornelas at the International Workshop “Nonlinear differential equations and control”, Milan September 2011.
机译:给定任何交流解({overline {x}:[a,b] rightarrow mathbb {R} ^ {n}})到co {v ^ {1}中的凸普通微分包含$$ x ^ {prime}(t) }(t),ldots,v ^ {m}(t)} qquad ae在[a,b]上,qquad qquad(^ {*})$$我们旨在解决{v ^ {1}(t)中的相关非凸包含$$ x ^ {prime}(t),ldots,v ^ {m}(t)} qquad ae,x(a)=上线{x}(a),x(b)=上线{x}(b),qquad qquad(^ {**})$$点式约束(例如,在第一个坐标上):$$ x_ {1}(t)leq上线{x} _ {1}(t)qquad forall t in [a,b]。 qquad qquad qquad(^ {***})$$尽管Liapunov在1940年已经解决了无约束包含(**),但其约束版本与(***)在1994年由Amar和Cellina解决了。标量n = 1种情况。在本文中,我们添加了一个额外的几何假设,在向量n> 1的情况下,它是必要且充分的,因为它存在约束包含(**)和(***)的解。我们还提供了2×2案例的许多示例和反例。数学主题分类(2010)小学28B05中学34A60关键词单积分的Liapunov凸定理非凸微分包含点方向约束向量度量范围的凸性本文的研究在以下地点进行:Cima-ue(埃弗拉大学数学研究中心) ,葡萄牙)获得了来自Fst研究项目PEst-OE / MAT / UI0117 / 2011的资金支持(葡萄牙基金会); A. Ornelas在2011年9月于米兰举行的“非线性微分方程和控制”国际研讨会上介绍了其及其应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号