首页> 外文期刊>New Mathematics and Natural Computation >APPLICATION OF ANT COLONY OPTIMIZATION TO CREDIT RISK ASSESSMENT
【24h】

APPLICATION OF ANT COLONY OPTIMIZATION TO CREDIT RISK ASSESSMENT

机译:蚁群优化在信用风险评估中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel approach to solve feature subset selection problems using an Ant Colony Optimization (ACO) algorithm. ACO is one of the important naturally inspired intelligent techniques. It is based on the foraging behavior of real ants in nature. The proposed ACO is combined with a number of nearest neighbor classifiers. The resulting ACO algorithm is applied to classify credit risk using data belonging to 1,411 firms obtained from a leading Greek commercial bank. The objective is to classify subject firms into several groups representing different levels of credit risk. The results of the proposed algorithm are compared with those of others including SVM, CART, and with two other metaheuristic algorithms using tabu search and genetic algorithms, both of which use nearest neighbor classifiers in the classification phase. The results suggest that the proposed method is more accurate than others that have been tested in classifying credit risk.
机译:本文提出了一种使用蚁群优化(ACO)算法解决特征子集选择问题的新颖方法。 ACO是自然启发的重要智能技术之一。它基于自然蚂蚁的觅食行为。拟议的ACO与许多最近的邻居分类器结合在一起。所得的ACO算法用于使用从领先的希腊商业银行获得的1,411家公司的数据对信用风险进行分类。目的是将主题公司分为代表不同信用风险等级的几组。将该算法的结果与其他算法(包括SVM,CART)以及其他两个使用禁忌搜索和遗传算法的元启发式算法进行了比较,两者均在分类阶段使用了最近邻分类器。结果表明,所提出的方法比在信用风险分类中经过测试的其他方法更为准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号