首页> 外文期刊>New Generation Computing >A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures
【24h】

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures

机译:共享内存并行体系结构并行编程模型的比较研究和评估

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, shared-memory parallel architectures have evol- ved and new programming frameworks have appeared that exploit these architectures: OpenMP, TBB, Cilk Plus, ArBB and OpenCL. This article focuses on the most extended of these frameworks in commercial and scientific areas. This paper shows a comparative study of these frameworks and an evaluation. The study covers several capacities, such as task deployment, scheduling techniques, or programming language abstractions. The evaluation measures three dimensions: code development complexity, performance and efficiency, measure as speedup per watt. For this evaluation, several parallel benchmarks have been implemented with each framework. These benchmarks are created to cover certain scenarios, like regular memory access or irregular computation. The conclusions show some highlights, like the fact that some frameworks (OpenMP, Cilk Plus) are better for transforming quickly a sequential code, others (TBB) have a small footprint which is ideal for small problems, and others (OpenCL) are suited for heterogeneous architectures but they require a very complex development process. The conclusions also show that the vectorization support is more critical than multitasking to achieve efficiency for those problems where this approach fits.
机译:如今,共享内存并行体系结构已经发展起来,出现了利用这些体系结构的新编程框架:OpenMP,TBB,Cilk Plus,ArBB和OpenCL。本文重点介绍在商业和科学领域中这些框架中最扩展的框架。本文显示了对这些框架的比较研究和评估。这项研究涵盖了多种功能,例如任务部署,调度技术或编程语言抽象。该评估测量三个维度:代码开发的复杂性,性能和效率,以每瓦特加速的速度来衡量。为了进行此评估,每个框架都实施了多个平行基准。创建这些基准以涵盖某些情况,例如常规内存访问或不规则计算。结论显示出一些亮点,例如某些框架(OpenMP,Cilk Plus)更适合快速转换顺序代码,而其他框架(TBB)的占地面积小,非常适合小问题,而其他框架(OpenCL)则适用于以下事实异构体系结构,但是它们需要非常复杂的开发过程。结论还表明,矢量化支持比多任务处理更关键,以实现适合该方法的那些问题的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号