首页> 外文期刊>Neurocomputing >Optimizing CNN-LSTM neural networks with PSO for anomalous query access control
【24h】

Optimizing CNN-LSTM neural networks with PSO for anomalous query access control

机译:用PSO优化CNN-LSTM神经网络,用于异常查询访问控制

获取原文
获取原文并翻译 | 示例

摘要

Database security focuses on protecting most organization's virtual data storage unit and confidential information from malicious threats and external attacks. To keep out data secure, we need to use a role-based access control (RBAC) approach to accurately differentiate access permissions, but SQL queries written by an authorized user have very similar characteristics and are difficult to distinguish. In this paper, we propose a method of optimizing CNN-LSTM neural networks with particle swarm optimization (PSO) to classify the roles in RBAC system. Convolutional neural network (CNN) can extract parsed SQL queries into smaller details and features through an analysis mechanism. Long short-term memory (LSTM) is also suitable for modeling the temporal information of SQL queries to recognize the context of user authorities. PSO repeatedly searches and optimizes the complex hyperparameter space of the CNN-LSTM. Our PSO-based CNN-LSTM neural networks outperform other deep learning and machine learning models in the TPC-E benchmark SQL query statement. Finally, experiments and analysis show the usefulness of PSO and identify the important SQL query features that affect user role classification. (c) 2021 Elsevier B.V. All rights reserved.
机译:数据库安全性侧重于保护大多数组织的虚拟数据存储单元和机密信息免于恶意威胁和外部攻击。为了防止数据安全,我们需要使用基于角色的访问控制(RBAC)方法来准确地区分访问权限,但是由授权用户编写的SQL查询具有非常相似的特征,并且难以区分。在本文中,我们提出了一种利用粒子群优化(PSO)优化CNN-LSTM神经网络的方法,以对RBAC系统中的角色进行分类。卷积神经网络(CNN)可以通过分析机制将解析的SQL查询提取为较小的细节和特征。长短期内存(LSTM)也适用于建模SQL查询的时间信息以识别用户权限的上下文。 PSO反复搜索并优化CNN-LSTM的复杂封面计空间。我们的PSO为基于CNN-LSTM神经网络,优于TPC-E基准SQL查询语句中的其他深度学习和机器学习模型。最后,实验和分析显示了PSO的有用性,并确定影响用户角色分类的重要SQL查询功能。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号