首页> 外文期刊>Neurocomputing >Improving GAN with inverse cumulative distribution function for tabular data synthesis
【24h】

Improving GAN with inverse cumulative distribution function for tabular data synthesis

机译:用逆累积分布函数改善GaN的表格数据合成

获取原文
获取原文并翻译 | 示例

摘要

Designing a generative model to synthesize realistic tabular data is of great significance in data science. Existing tabular data generative models have difficulty in handling complicated and diverse marginal dis-tribution types due to the gradient vanishing problem, and these models pay little attention to the cor-relation between attributes. We propose a method that improves the generative adversarial network (GAN) with inverse cumulative distribution function for tabular data synthesis. This method first trans -forms continuous columns into uniform distribution data by using the cumulative distribution function, which can alleviate the gradient vanishing problem in model training. Then the method trains GAN with the transformed data, where the discriminator with label reconstruction function is presented to model the correlation among attributes accurately by introducing an auxiliary supervised task to help the cor-relations extraction. After that, we train a neural network for each continuous column to perform the inverse transformation of generated data into the target distribution, thereby the synthetic data is obtained. Experiments on simulated and real-world datasets show that our method compares favorably against the state-of-the-art methods in modeling tabular data. (c) 2021 Elsevier B.V. All rights reserved.
机译:设计生成模型以综合现实表格数据在数据科学中具有重要意义。由于渐变消失问题,现有的表格数据生成模型具有难以处理复杂和多样化的边缘分歧类型,这些模型几乎没有关注属性之间的核心关系。我们提出了一种方法,该方法改善了具有表格数据合成的逆累积分布函数的生成对抗性网络(GAN)。该方法首先使用累积分布函数将连续列的连续列变为均匀的分布数据,这可以缓解模型训练中的渐变消失问题。然后,该方法用变换数据训练GaN,其中通过引入辅助监督任务来帮助模拟提取来模拟具有标签重建功能的鉴别器以模拟属性之间的相关性。之后,我们训练每个连续列的神经网络,以执行所产生的数据的逆变换到目标分布,从而获得了合成数据。模拟和现实世界数据集的实验表明,我们的方法对建模表格数据的最先进方法比较有利。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号