首页> 外文期刊>Neurocomputing >Reconstruction of natural images from evoked brain activity with a dictionary-based invertible encoding procedure
【24h】

Reconstruction of natural images from evoked brain activity with a dictionary-based invertible encoding procedure

机译:用基于字典的可逆性编码程序重建诱发大脑活动的自然图像

获取原文
获取原文并翻译 | 示例

摘要

Studies on visual encoding and reconstruction based on functional magnetic resonance imaging (fMRI) have inspired each other in recent years. However, as far as we know, there has not been any study that has achieved the reconstruction of natural stimuli by directly reversing an encoding model with strong interpretability; in other words, the interpretability of current decoding methods is weak. To solve this problem, we first design a reversible feature extraction method using Gabor wavelets and build a non negative sparse mapping between the features and brain activity, thus achieving visual encoding. Then, based on the mapping, we estimate the features from measured brain activity and reverse the feature extraction method step-by-step. In this process, we use dictionary-learning technology to explore the natural statistical structure of the features from the image database, thereby greatly reducing the negative impact of information loss and fMRI noise. Finally, the stimuli can be reconstructed from the estimated features by back-propagation. Because the encoding procedure is highly transparent, the reconstruction procedure obtained by reversing the encoding model is also highly interpretable. The experiments show that our encoding method can build effective voxel-wise models for early visual areas, and also show that the proposed method is capable of reconstructing the basic outline of the stimuli with low structural complexity. (c) 2021 Elsevier B.V. All rights reserved.
机译:基于功能磁共振成像(FMRI)的视觉编码和重建研究近年来互相启发。然而,据我们所知,通过直接扭转具有强大可解释性的编码模型,还没有任何研究则通过直接逆转编码模型实现了自然刺激的重建;换句话说,电流解码方法的可解释性较弱。为了解决这个问题,我们首先使用Gabor小波设计一种可逆特征提取方法,并在特征和大脑活动之间构建非负稀疏映射,从而实现视觉编码。然后,基于映射,我们估计来自测量的大脑活动的特征,并逐步逆转特征提取方法。在此过程中,我们使用字典学习技术来探索来自图像数据库的特征的自然统计结构,从而大大降低了信息丢失和FMRI噪声的负面影响。最后,可以通过反向传播从估计的特征重建刺激。因为编码过程是高度透明的,所以通过反转编码模型获得的重建过程也是高度可解释的。实验表明,我们的编码方法可以为早期视觉区域构建有效的体素 - 明智模型,并且还表明该方法能够以低结构复杂性重建刺激的基本轮廓。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第7期|338-351|共14页
  • 作者

    Li Chao; Liu Baolin; Wei Jianguo;

  • 作者单位

    Tianjin Univ Coll Intelligence & Comp Tianjin Key Lab Cognit Comp & Applicat Tianjin 300350 Peoples R China;

    Univ Sci & Technol Beijing Sch Comp & Commun Engn Beijing 100083 Peoples R China;

    Tianjin Univ Coll Intelligence & Comp Tianjin Key Lab Cognit Comp & Applicat Tianjin 300350 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Invertible encoding; Nonnegative sparse mapping; Reconstruction; Dictionary learning; fMRI;

    机译:可逆编码;非负稀疏映射;重建;字典学习;FMRI;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号