首页> 外文期刊>Neurocomputing >End-to-end aspect-based sentiment analysis with hierarchical multitask learning
【24h】

End-to-end aspect-based sentiment analysis with hierarchical multitask learning

机译:基于端到端的基于方面的情感分析,具有分层多任务学习

获取原文
获取原文并翻译 | 示例

摘要

End-to-end aspect-based sentiment analysis (E2E-ABSA) is a sequence labeling task which detects aspect terms and the corresponding sentiment simultaneously. Previous works ignore the useful task-specific knowledge and embed the vital aspect and sentiment attributes implicitly in the intermediate layers. In this paper, we propose a hierarchical multi-task learning framework, which explicitly leverages task-related knowledge via the supervision of intermediate layers. Specifically, aspect term extraction, sentiment lexicon detection, and aspect sentiment detection are designed to encode the aspect boundary and sentiment information. The tasks are in charge of different perspectives and levels of knowledge, which provide multi-fold regulation effects to optimize the main task. Unlike vanilla multi-task learning, all the tasks are integrated into a hierarchical structure to help the higher-level tasks make full use of the lower-level tasks & rsquo; information. Experimental results on three datasets demonstrate that the proposed method achieves state-of-the-art results. Further analysis shows that the proposed method achieves better performance than single-task and vanilla multi-task learning methods and yields a more discriminative feature representation. (c) 2021 Elsevier B.V. All rights reserved.
机译:基于端到端的基于方面的情绪分析(E2E-ABSA)是一种序列标记任务,其同时检测方面术语和相应情绪。以前的作品忽略了特定的任务特定知识,并在中间层中隐式地嵌入了重要的方面和情感属性。在本文中,我们提出了一种分层多任务学习框架,通过中间层的监督明确地利用任务相关知识。具体而言,旨在旨在编码方面术语提取,情绪词典检测和方面情绪检测来编码方面边界和情感信息。任务负责不同的视角和知识水平,可提供多折的调节效果,以优化主要任务。与Vanilla多任务学习不同,所有任务都集成到分层结构中,以帮助更高级别的任务充分利用较低级别的任务和rsquo;信息。三个数据集的实验结果表明,所提出的方法实现最先进的结果。进一步的分析表明,该方法比单任务和香草多任务学习方法更好地实现了更好的性能,并产生更差异的特征表示。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第30期|178-188|共11页
  • 作者单位

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China|Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100190 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China|Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China|Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China|Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China|Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China|Univ Chinese Acad Sci Beijing 100190 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Aspect based sentiment analysis; Multi-task learning; Hierachical structure;

    机译:基于方面的情绪分析;多任务学习;层次结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号