首页> 外文期刊>Neurocomputing >A dependency syntactic knowledge augmented interactive architecture for end-to-end aspect-based sentiment analysis
【24h】

A dependency syntactic knowledge augmented interactive architecture for end-to-end aspect-based sentiment analysis

机译:基于端到端宽方情感分析的依赖性句法知识增强交互式架构

获取原文
获取原文并翻译 | 示例

摘要

The end-to-end aspect-based sentiment analysis (ABSA) task remains to be a long-standing challenge, which aims to extract the aspect term and then identify its sentiment orientation. In previous approaches, the explicit syntactic structure of a sentence, which reflects the syntax properties of natural language and hence is intuitively crucial for aspect term extraction and sentiment recognition, is insufficiently modeled. In this paper, we thus propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA. This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network. Additionally, we design a simple yet effective message-passing mechanism to ensure that our model learns from multiple related tasks in a multi-task learning framework. Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach, which significantly outperforms the existing state-of-the-art method. Besides, we achieve further improvements by using BERT as an additional feature extractor. (c) 2021 Elsevier B.V. All rights reserved.
机译:基于端到端的基于方面的情绪分析(ABSA)任务仍然是一个长期挑战,旨在提取一个方面的术语,然后识别其情绪取向。在先前的方法中,反映自然语言的语法属性的句子的明确句法结构对于方面术语提取和情绪识别直观地是直观的,这是不够的建模。在本文中,我们提出了一种新的依赖性句法知识增强互动架构,其用于端到端ABSA的多任务学习。该模型能够通过利用精心设计的依赖关系嵌入式图形卷积网络充分利用句法知识(依赖关系和类型)。此外,我们设计了一个简单但有效的消息传递机制,以确保我们的模型在多任务学习框架中从多个相关任务中了解到。三个基准数据集的广泛实验结果证明了我们方法的有效性,这显着优于现有的最先进的方法。此外,我们通过使用BERT作为附加功能提取器来实现进一步的改进。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号