首页> 外文期刊>Neurocomputing >Deep node clustering based on mutual information maximization
【24h】

Deep node clustering based on mutual information maximization

机译:基于相互信息最大化的深度节点聚类

获取原文
获取原文并翻译 | 示例

摘要

Variational Graph Autoencoders (VGAs) are generative models for unsupervised learning of node representations within graph data. While VGAs have been achieved state-of-the-art results for different predictive tasks on graph-structured data, they are susceptible to the over-pruning problem where only a small subset of the stochastic latent units are active. This can limit their modeling capacity and their ability to learn meaningful representations. In this paper, we present SOLI (Stacked auto-encoder for nOde cLusterIng), an information maximization approach for learning graph representations by leveraging maximal cliques. SOLI relies on aggregating useful representations by assigning clique-based weights to various edges in a neighborhood while maximizing mutual information. The learned representations are mindful of graph patches centered around each node, and can be used for a range of downstream tasks, and thus encouraging more active units. We demonstrate strong performance across three graph benchmark datasets.(Code is available at https://github.com/SoheilaMolaei/SOLI.) (c) 2021 Elsevier B.V. All rights reserved.
机译:变图自动编码(可变增益放大器)是图形数据中的节点交涉无监督学习生成模型。虽然可变增益放大器已经实现状态的最先进的结果对图形结构的数据不同的预测的任务,它们容易受到过度修剪问题,其中仅随机潜单元的一小部分是活动的。这可能会限制他们的造型能力和他们的学习有意义的表述能力。在本文中,我们目前SOLI(堆叠自动编码器来为节点群集),用于通过利用最大派系的学习曲线表示的信息最大化的方法。 SOLI依赖于在附近分配基于集团权重不同的边缘,同时最大限度地相互信息合计用的表现。所学习的表示是注意到围绕每个节点为中心的图形补丁,并且可以用于对一系列的下游任务,从而鼓励更积极的单元。我们证明在三个图形基准数据集性能强。(代码可在https://github.com/SoheilaMolaei/SOLI。)版权所有(C)2021爱思唯尔B.V.所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号