首页> 外文期刊>Knowledge-Based Systems >Deep clustering by maximizing mutual information in variational auto-encoder
【24h】

Deep clustering by maximizing mutual information in variational auto-encoder

机译:通过在变形式自动编码器中最大化相互信息的深度聚类

获取原文
获取原文并翻译 | 示例

摘要

Unsupervised clustering, which is extensively employed in deep learning and computer vision as a fundamental technique, has attracted much attention in recent years. Deep embedding clustering often uses auto-encoders to learn representations for clustering. However, auto-encoders tend to corrupt the learning representations when simultaneously learning embedded representations and performing clustering. In this paper, we propose a Deep Clustering via Variational Auto-Encoder (DC-VAE) of mutual information maximization. First, we formulate the deep clustering problem as learning soft cluster assignments within the framework of variational auto-encoder. Second, we impose mutual information maximization on the observed data and the representations to prevent soft cluster assignments from distorting learning representations. Third, we derive a new generalization evidence lower bound objects related to several previous models and introduce parameters to balance learning informative representations and clustering. It is shown that the proposed model can significantly boost the performance of clustering by learning effective and reliable representations for downstream machine learning tasks. Through experimental results on several datasets, we demonstrate that the proposed model is competitive with existing state-of-the-arts on multiple performance metrics. (C) 2020 Elsevier B.V. All rights reserved.
机译:无监督的聚类,广泛使用深入学习和计算机愿景作为基本技术,近年来引起了很多关注。深度嵌入式聚类通常使用自动编码器来学习聚类的表示。但是,当同时学习嵌入式表示和执行群集时,自动编码器倾向于损坏学习表示。在本文中,我们提出了通过相互信息最大化的变分自动编码器(DC-VAE)的深层聚类。首先,我们将深度聚类问题作为变形自动编码器框架内的学习软群分配。其次,我们对观察到的数据和表示来施加相互信息的最大化,以防止软群赋值扭曲学习表示。第三,我们派生了与上一个模型相关的新的泛化证据,并引入参数以平衡学习信息表达和聚类。结果表明,所提出的模型可以通过学习用于下游机器学习任务的有效和可靠的表示来显着提高聚类的性能。通过在几个数据集上的实验结果,我们证明拟议的模型与现有的多种性能指标具有竞争力。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号