首页> 外文期刊>Neurocomputing >PrePCT: Traffic congestion prediction in smart cities with relative position congestion tensor
【24h】

PrePCT: Traffic congestion prediction in smart cities with relative position congestion tensor

机译:Prepct:具有相对位置拥塞张量的智能城市的交通拥堵预测

获取原文
获取原文并翻译 | 示例

摘要

Traffic congestion prediction is a vital part of Intelligent Transportation Systems in smart cities. Effective methods for traffic congestion prediction can help people make travel plans reasonably with Advanced Traveler Information Systems. Most of the existing methods for traffic congestion prediction was designed for a specific location. The parameters need to be modified when applying these methods to different locations. Other studies on the traffic network require sophisticated data pre-processing such as map matching. In this paper, we build a model named Relative Position Congestion Tensor and propose a Predictor for Position Congestion Tensor for traffic congestion prediction. First, we design a novel approach to construct congestion matrix on region traffic networks using the concept of relative locations for road nodes and convert matrices into three-dimensional spatio-temporal tensors. Then, we propose a method based on convolutional long-short term memory network to predict congestion at all locations of the road network in the near future. The experiments show that in all locations where congestion often occurs, the proposed method significantly outperforms baseline models including Linear Regression, Autoregressive Integrated Moving Average, Support Vector Regression, Random Forest, Gradient Boosting Regression, Long-Short Term Memory and generally outperforms the Convolution-based deep Neural Network modeling Periodic traffic data. Furthermore, we study the internal structure of the Predictor for Position Congestion Tensor model to analyze the interpretability of the model for congestion prediction. The results show that the proposed model can accurately capture the temporal and spatial characteristics of traffic.(c) 2020 Elsevier B.V. All rights reserved.
机译:交通拥堵预测是智能城市中智能交通系统的重要组成部分。交通拥堵预测的有效方法可以帮助人们合理地与先进的旅行者信息系统合理地进行旅行计划。为特定位置设计了大多数交通拥堵预测方法。将这些方法应用于不同位置时,需要修改参数。交通网络的其他研究需要复杂的数据预处理,例如映射匹配。在本文中,我们构建一个名为相对位置拥塞张量的模型,并提出了一种用于交通拥堵预测的位置拥塞张量的预测因子。首先,我们设计一种使用道路节点的相对位置的概念构建区域交通网络上的拥塞矩阵的新方法,并将矩阵转换为三维时空张量。然后,我们提出了一种基于卷积的长期记忆网络的方法,以预测在不久的将来在路网络的所有位置拥堵。实验表明,在经常发生拥塞的所有位置,所提出的方法显着优于基线模型,包括线性回归,自回归综合移动平均线,支持向量回归,随机森林,梯度提高回归,长短短期记忆,并且通常优于卷积 - 基于深度神经网络建模定期交通数据。此外,我们研究了定位拥塞张量模型的预测器的内部结构,分析了拥塞预测模型的解释性。结果表明,该模型可以准确地捕获交通的时间和空间特征。(c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号