首页> 外文期刊>Neurocomputing >Graph partitioning and graph neural network based hierarchical graph matching for graph similarity computation
【24h】

Graph partitioning and graph neural network based hierarchical graph matching for graph similarity computation

机译:基于图形分区和图形神经网络的分层图匹配图形相似性计算

获取原文
获取原文并翻译 | 示例

摘要

Graph similarity computation aims to predict a similarity score between one pair of graphs to facilitate downstream applications, such as finding the most similar chemical compounds similar to a query compound or Fewshot 3D Action Recognition. Recently, some graph similarity computation models based on neural networks have been proposed, which are either based on graph-level interaction or node-level comparison. However, when the number of nodes in the graph increases, it will inevitably bring about reduced representation ability or high computation cost. Motivated by this observation, we propose a graph partitioning and graph neural network-based model, called PSimGNN, to effectively resolve this issue. Specifically, each of the input graphs is partitioned into a set of subgraphs to extract the local structural features directly. Next, a novel graph neural network with an attention mechanism is designed to map each subgraph into an embedding vector. Some of these subgraph pairs are automatically selected for node-level comparison to supplement the subgraph-level embedding with fine-grained information. Finally, coarse-grained interaction information among subgraphs and fine-grained comparison information among nodes in different subgraphs are integrated to predict the final similarity score. Experimental results on graph datasets with different graph sizes demonstrate that PSimGNN outperforms state-of-the-art methods in graph similarity computation tasks using approximate Graph Edit Distance (GED) as the graph similarity metric. ? 2021 Elsevier B.V. All rights reserved.
机译:图相似性计算旨在预测一对图之间的相似性得分,以便于下游应用,例如查找类似于查询化合物或短3D动作识别的最相似的化学化合物。最近,已经提出了基于神经网络的一些图象相似性计算模型,其基于图形级交互或节点级比较。但是,当图中的节点数量增加时,它将不可避免地带来降低的表示能力或高计算成本。激励这一观察,我们提出了一个名为PSIMGNN的图形分区和基于图形的基于神经网络的模型,以有效地解决这个问题。具体地,每个输入图被划分为一组子图以直接提取局部结构特征。接下来,设计具有注意机制的新颖曲线图形神经网络,用于将每个子图映射到嵌入向量中。这些子图对中的一些用于节点级比较,以补充具有细粒度信息的子图级嵌入。最后,将不同子图中的节点之间的子图和细粒度比较信息之间的粗粒粒度交互信息集成为预测最终的相似度分数。具有不同图尺寸的图形数据集的实验结果表明,使用近似图表编辑距离(GED)作为图形相似度指标,PSIMGNN在图形相似性计算任务中优于最先进的方法。还2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第7期|348-362|共15页
  • 作者单位

    Chongqing Univ Sch Big Data & Software Engn Chongqing 401331 Peoples R China|Zhejiang Univ Coll Control Sci & Engn Hangzhou 310027 Zhejiang Peoples R China;

    Chongqing Univ Sch Big Data & Software Engn Chongqing 401331 Peoples R China|Zhejiang Univ Coll Control Sci & Engn Hangzhou 310027 Zhejiang Peoples R China;

    Chongqing Univ Sch Big Data & Software Engn Chongqing 401331 Peoples R China;

    Zhejiang Univ Coll Control Sci & Engn Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Coll Control Sci & Engn Hangzhou 310027 Zhejiang Peoples R China;

    Harbin Inst Technol Coll Foreign Languages Harbin 150001 Heilongjiang Peoples R China;

    Zhejiang Univ Coll Energy Engn Hangzhou 310027 Zhejiang Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Graph deep learning; Graph similarity computation; Graph partition; Graph neural network;

    机译:图深度学习;图相似性计算;图分区;图形神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号