首页> 外文期刊>Neurocomputing >Neural-network-based formation control with collision, obstacle avoidance and connectivity maintenance for a class of second-order nonlinear multi-agent systems
【24h】

Neural-network-based formation control with collision, obstacle avoidance and connectivity maintenance for a class of second-order nonlinear multi-agent systems

机译:基于神经网络的形成控制,碰撞,避免避免和连接维护的一类二阶非线性多功能机系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a formation control strategy with collision, obstacle avoidance and connectivity maintenance is developed for a class of second-order nonlinear multi-agent systems under external disturbances. Firstly, in order to handle the nonlinear dynamics of the multi-agent systems and the unknown disturbances in the environment, neural network (NN) techniques are employed in the proposed control strategy. Then, the distributed formation controller with collision, obstacle avoidance is designed by combining artificial potential field (APF) methods and leader & ndash;follower formation methods. Secondly, due to the collision or obstacle avoidance terms within the formation controller may result in large separation distance among agents and each agent & rsquo;s communication distance is limited by its hardware, the collision or obstacle avoidance terms increase the chance of losing connectivity between agents. In order to guarantee the connectivity of the formation, the connectivity maintenance controller is designed with taking the communication topology into account. Based on Lyapunov stability theory, it is proved that the stability of the closed-loop multi-agent systems can be guaranteed. Finally, the simulation results verify the effectiveness of the proposed approach.(c) 2021 Elsevier B.V. All rights reserved.
机译:本文在外部干扰下开发了一类二阶非线性多剂系统开发的形成控制策略,障碍避免和连接维护。首先,为了处理多种子体系统的非线性动力学以及环境中未知的干扰,在所提出的控制策略中采用神经网络(NN)技术。然后,采用碰撞的分布式形成控制器,通过组合人工势域(APF)方法和领导者和Ndash来设计避免避免;跟随器形成方法。其次,由于形成控制器内的碰撞或障碍物避免术语可能导致剂量之间的大分离距离,并且每个试剂和rsquo; S的通信距离受其硬件的限制,碰撞或避免术语增加了失去连接之间的可能性代理商。为了保证形成的连接,连接维护控制器设计为将通信拓扑考虑在内。基于Lyapunov稳定性理论,证明可以保证闭环多蛋白系统的稳定性。最后,仿真结果验证了所提出的方法的有效性。(c)2021 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第7期|243-255|共13页
  • 作者单位

    Dalian Maritime Univ Nav Coll Dalian 116026 Peoples R China;

    Univ Elect Sci & Technol China Sch Automat Engn Chengdu 611731 Peoples R China;

    Dalian Maritime Univ Nav Coll Dalian 116026 Peoples R China|Univ Elect Sci & Technol China Sch Automat Engn Chengdu 611731 Peoples R China;

    Dalian Maritime Univ Nav Coll Dalian 116026 Peoples R China;

    Dalian Maritime Univ Nav Coll Dalian 116026 Peoples R China;

    Dalian Maritime Univ Nav Coll Dalian 116026 Peoples R China;

    Dalian Maritime Univ Nav Coll Dalian 116026 Peoples R China|South China Univ Technol Sch Comp Sci & Engn Guangzhou 510641 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Formation control; Collision avoidance; Obstacle avoidance; Connectivity maintenance; Nonlinear multi-agent systems; Neural-network;

    机译:形成控制;碰撞避免;避免避免;连接维护;非线性多功能系统;神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号