首页> 外文期刊>Neurocomputing >Pairwise attention network for cross-domain image recognition
【24h】

Pairwise attention network for cross-domain image recognition

机译:用于跨域图像识别的成对注意网络

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the domain adaption has received wide attention from machine learning communities because of differences in data distribution or the lack of training data in a practical machine learning task. In this work, we propose a Pairwise Attention Network (PAN for short) for addressing cross-domain image recognition task. In this model, different local features and the global-feature are concatenated to obtain different attention estimators, and then they are combined to get the attention map. In this way, we can focus on the important parts of an image, and ignore the irrelative regions. Moreover, attention consistency is also embedded in PAN to make sure consistent interest regions in the same class. Besides, to improve the feature discrimination, an embedding discriminative subspace is learned where it maps positive sample pairs aligned in a hypersphere and negative sample pairs separated. Extensive experimental results on the MNIST-USPS, office, and Visda-2017 datasets demonstrate that PAN can outperform state-of-the-art methods in terms of average accuracy.(c) 2021 Published by Elsevier B.V.
机译:近年来,由于数据分布的差异或实际机器学习任务中缺乏培训数据,域名适应从机器学习社区的广泛关注。在这项工作中,我们提出了一种成对的注意网络(Short for Short),用于寻址跨域图像识别任务。在此模型中,不同的本地特征和全局功能被连接以获得不同的关注估算器,然后组合以获取注意图。通过这种方式,我们可以专注于图像的重要部分,并忽略呈现区域。此外,PAN中还嵌入了注意力一致性,以确保同一类中的一致兴趣区域。此外,为了改善特征歧视,学习嵌入的鉴别子空间,其中映射在间隔的低间隔和负样品对中的正样本对。在MNIST-USPS,Office和Visda-2017数据集上进行了广泛的实验结果,证明了PAN可以在平均准确性方面优于最先进的方法。(c)由elsevier b.v发布的2021年。

著录项

  • 来源
    《Neurocomputing》 |2021年第17期|393-402|共10页
  • 作者单位

    Qilu Univ Technol Shandong Artif Intelligence Inst Shandong Acad Sci Jinan 250014 Peoples R China;

    Tianjin Univ Technol Key Lab Comp Vis & Syst Minist Educ Tianjin 300384 Peoples R China|Qilu Univ Technol Shandong Artif Intelligence Inst Shandong Acad Sci Jinan 250014 Peoples R China|Tianjin Univ Technol Tianjin Key Lab Intelligence Comp & Novel Softwar Tianjin 300384 Peoples R China;

    Tianjin Univ Technol Key Lab Comp Vis & Syst Minist Educ Tianjin 300384 Peoples R China|Tianjin Univ Technol Tianjin Key Lab Intelligence Comp & Novel Softwar Tianjin 300384 Peoples R China;

    Tianjin Univ Technol Key Lab Comp Vis & Syst Minist Educ Tianjin 300384 Peoples R China|Tianjin Univ Technol Tianjin Key Lab Intelligence Comp & Novel Softwar Tianjin 300384 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Attention mechanisms; Cross-domain; Image recognition; Pairwise;

    机译:注意机制;跨域;图像识别;成对;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号