首页> 外文期刊>IEEE Transactions on Image Processing >A Pairwise Attentive Adversarial Spatiotemporal Network for Cross-Domain Few-Shot Action Recognition-R2
【24h】

A Pairwise Attentive Adversarial Spatiotemporal Network for Cross-Domain Few-Shot Action Recognition-R2

机译:用于跨域的成对临床对抗性时空网络,用于域几次射击动作识别-R2

获取原文
获取原文并翻译 | 示例

摘要

Action recognition is a popular research topic in the computer vision and machine learning domains. Although many action recognition methods have been proposed, only a few researchers have focused on cross-domain few-shot action recognition, which must often be performed in real security surveillance. Since the problems of action recognition, domain adaptation, and few-shot learning need to be simultaneously solved, the cross-domain few-shot action recognition task is a challenging problem. To solve these issues, in this work, we develop a novel end-to-end pairwise attentive adversarial spatiotemporal network (PASTN) to perform the cross-domain few-shot action recognition task, in which spatiotemporal information acquisition, few-shot learning, and video domain adaptation are realised in a unified framework. Specifically, the Resnet-50 network is selected as the backbone of the PASTN, and a 3D convolution block is embedded in the top layer of the 2D CNN (ResNet-50) to capture the spatiotemporal representations. Moreover, a novel attentive adversarial network architecture is designed to align the spatiotemporal dynamics actions with higher domain discrepancies. In addition, the pairwise margin discrimination loss is designed for the pairwise network architecture to improve the discrimination of the learned domain-invariant spatiotemporal feature. The results of extensive experiments performed on three public benchmarks of the cross-domain action recognition datasets, including SDAI Action I, SDAI Action II and UCF50-OlympicSport, demonstrate that the proposed PASTN can significantly outperform the state-of-the-art cross-domain action recognition methods in terms of both the accuracy and computational time. Even when only two labelled training samples per category are considered in the office1 scenario of the SDAI Action I dataset, the accuracy of the PASTN is improved by 6.1%, 10.9%, 16.8%, and 14% compared to that of the $TA^{3}N$ , TemporalPooling, I3D, and P3D methods, respectively.
机译:行动识别是计算机视觉和机器学习域中的流行研究主题。虽然已经提出了许多动作识别方法,但只有少数研究人员专注于跨域几次射击动作识别,这通常必须以真正的安全监视。由于采取行动识别,域适应和少量学习的问题,因此需要同时解决,跨域几次射击动作识别任务是一个具有挑战性的问题。为了解决这些问题,在这项工作中,我们开发了一种新的端到端成对分娩抗逆性普通的时空空网(帕斯坦),以执行跨领域的几次射击动作识别任务,其中不时的信息获取,少量学习,和视频域适应在统一的框架中实现。具体地,选择RESET-50网络作为派的骨干,并且3D卷积块嵌入在2D CNN(RESET-50)的顶层中以捕获时空表示。此外,一种新颖的细节对抗网络架构旨在使时态动力学动态与更高的域差异对齐。此外,为成对网络架构设计了成对边缘辨别损耗,以改善学习域不变的时空特征的辨别。在跨域行动识别数据集的三个公共基准中进行了广泛的实验结果,包括SDAI行动I,SDAI行动II和UCF50-奥林匹克体育体表明,拟议的派出可以显着优于最先进的十字架域行动识别方法在准确性和计算时间方面。即使在SDAI行动I Dataset的Office1场景中考虑每类的两个标记的训练样本,蜡染的准确性也提高了6.1%,10.9%,16.8%,与$ TA ^相比,14% {3} N $,临时泊井,i3d和p3d方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号