首页> 外文期刊>IEEE Transactions on Image Processing >Few-Shot Human-Object Interaction Recognition With Semantic-Guided Attentive Prototypes Network
【24h】

Few-Shot Human-Object Interaction Recognition With Semantic-Guided Attentive Prototypes Network

机译:用语义引导的细心原型网络少量拍摄人体对象交互识别

获取原文
获取原文并翻译 | 示例

摘要

Extreme instance imbalance among categories and combinatorial explosion make the recognition of Human-Object Interaction (HOI) a challenging task. Few studies have addressed both challenges directly. Motivated by the success of few-shot learning that learns a robust model from a few instances, we formulate HOI as a few-shot task in a meta-learning framework to alleviate the above challenges. Due to the fact that the intrinsical characteristic of HOI is diverse and interactive, we propose a Semantic-guided Attentive Prototypes Network (SAPNet) framework to learn a semantic-guided metric space where HOI recognition can be performed by computing distances to attentive prototypes of each class. Specifically, the model generates attentive prototypes guided by the category names of actions and objects, which highlight the commonalities of images from the same class in HOI. In addition, we design two alternative prototypes calculation methods, i.e., Prototypes Shift (PS) approach and Hallucinatory Graph Prototypes (HGP) approach, which explore to learn a suitable category prototypes representations in HOI. Finally, in order to realize the task of few-shot HOI, we reorganize 2 HOI benchmark datasets with 2 split strategies, i.e., HICO-NN, TUHOI-NN, HICO-NF, and TUHOI-NF. Extensive experimental results on these datasets have demonstrated the effectiveness of our proposed SAPNet approach.
机译:类别和组合爆炸之间的极端实例不平衡使人体对象互动(Hoi)成为一个具有挑战性的任务。很少有研究直接解决了这两个挑战。由于少数拍摄学习的成功,从少数情况下学习了一个强大的模型,我们将会议制定在元学习框架中的几个镜头任务,以减轻上述挑战。由于Hoi的本质特征是多样化和互动的事实,我们提出了一种语义引导的细心原型网络(SAPNET)框架,以学习一个语义导向的公制空间,其中可以通过计算每个距离的距离来执行HOI识别班级。具体而言,该模型生成由行动和对象的类别名称指导的细心原型,该类别突出显示了HOI中同一类的图像的共同性。此外,我们设计了两种替代原型计算方法,即原型移位(PS)方法和幻觉图原型(HGP)方法,探索了在会安的合适类别原型表示。最后,为了实现几次拍摄的HOI的任务,我们重新组织了2个分裂策略,即Hico-NN,Tuhoi-Nn,Hico-NF和Tuhoi-NF的2个Hoi基准数据集。对这些数据集的广泛实验结果表明了我们提出的SAPNET方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号