首页> 外文期刊>Neurocomputing >Hard Decorrelated Centralized Loss for fine-grained image retrieval
【24h】

Hard Decorrelated Centralized Loss for fine-grained image retrieval

机译:用于细粒度的图像检索的硬切断的集中损失

获取原文
获取原文并翻译 | 示例

摘要

Although there is abundant of investigations on fine-grained image retrieval, it is still an extremely challenging task in the field of computer vision, due to the character of small diversity in inter-class but large diversity within intra-class. To handle this task, loss functions are critical to the performance of a deep convolutional neural network in extracting the discriminative feature of the fine-grained image for retrieval. Recent studies showed that the global structure loss functions help to extract more discriminative features. In this paper, we introduce a novel global structure loss function, named Hard Decorrelated Centralized Loss, for further improving the representation for fine-grained image retrieval. The proposed loss is available in extracting the discriminative feature for dividing the most similar categories. In our experiments, we employ the proposed loss to train the convolutional neural network, which shows state-of-the-art performances on six classical fine-grained image retrieval benchmarks, e.g. CUB -2002011 and Stanford Cars.(c) 2021 Elsevier B.V. All rights reserved.
机译:虽然对细粒度的图像检索有丰富的调查,但由于阶级间的阶级小的多样性,但在内的阶级小的多样性,它仍然是计算机视野中的一个极具挑战性的任务。为了处理此任务,丢失功能对于深度卷积神经网络的性能来说对于提取细粒图像的辨别特征来检索的辨别特征至关重要。最近的研究表明,全球结构损失功能有助于提取更多的歧视特征。在本文中,我们介绍了一种新的全球结构损失函数,命名为硬盘相关的集中损失,以进一步提高细粒度检索的表示。提取拟议的损失可以提取除以最相似类别的歧视特征。在我们的实验中,我们采用拟议的损失来培训卷积神经网络,其显示六种古典细粒度图像检索基准测试的最先进的表演,例如, Cub -2002011和斯坦福汽车。(c)2021 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第17期|26-37|共12页
  • 作者单位

    Guangdong Polytech Normal Univ Sch Comp Sci Guangzhou 510000 Peoples R China;

    Guangdong Polytech Normal Univ Sch Automat Guangzhou 510000 Peoples R China;

    Guangdong Univ Technol Automat Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Automat Guangzhou 510006 Peoples R China;

    Guangzhou Univ Sch Mech & Elect Engn Guangzhou 510006 Peoples R China;

    Guangdong Univ Technol Automat Guangzhou 510006 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fine-grained image retrieval; Hard Decorrelated Centralized Loss; Convolutional neural network;

    机译:细粒度的图像检索;硬切断的集中损失;卷积神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号