首页> 外文期刊>Neurocomputing >Automatic whole slide pathology image diagnosis framework via unit stochastic selection and attention fusion
【24h】

Automatic whole slide pathology image diagnosis framework via unit stochastic selection and attention fusion

机译:自动整体幻灯片病理学图像诊断框架通过单机随机选择和注意融合

获取原文
获取原文并翻译 | 示例

摘要

Pathology tissue slides are taken as the gold standard for the diagnosis of most cancer diseases. Automatic pathology slide diagnosis is still a challenging task for researchers because of the high-resolution, significant morphological variation, and ambiguity between malignant and benign regions in whole slide images (WSIs). In this study, we introduce a general framework to automatically diagnose different types of WSIs via unit stochastic selection and attention fusion. For example, a unit can denote a patch in a histopathology slide or a cell in a cytopathology slide. To be specific, we first train a unit-level convolutional neural network (CNN) to perform two tasks: constructing feature extractors for the units and for estimating a unit & rsquo;s non-benign probability. Then we use our novel stochastic selection algorithm to choose a small subset of units that are most likely to be non-benign, referred to as the Units Of Interest (UOI), as determined by CNN. Next, we use the attention mechanism to fuse the representations of the UOI to form a fixed-length descriptor for the WSI & rsquo;s diagnosis. We evaluate the proposed framework on three datasets: histological thyroid frozen sections, histological colonoscopy tissue slides, and cytological cervical pap smear slides. The framework achieves diagnosis accuracies higher than 0.8 and AUC values higher than 0.85 in all three applications. Experiments demonstrate the generality and effectiveness of the proposed framework and its potentiality for clinical applications. (C) 2021 Elsevier B.V. All rights reserved.
机译:病理组织载玻片被视为诊断大多数癌症疾病的金标准。自动病理学幻灯片诊断仍为研究人员仍然是一个具有挑战性的任务,因为在整个幻灯片图像(WSIS)中恶性和良性区域之间的显着形态学变化和模糊性。在这项研究中,我们介绍了一般框架,通过单元随机选择和注意融合自动诊断不同类型的WSI。例如,单元可以在组织病理学载玻片中或细胞病变载体中的细胞中表示单位。具体而言,我们首先培训一个单位级卷积神经网络(CNN)来执行两个任务:构建单位的特征提取器,并估计单位和rsquo; S非良性概率。然后,我们使用我们的新型随机选择算法选择最有可能是非良性的单位小组,称为感兴趣的单位(UOI),由CNN确定。接下来,我们使用注意机制来融合UOI的表示,以形成WSI和RSQU的固定长度描述符。我们评估三个数据集的提出框架:组织学甲状腺冷冻切片,组织学结肠镜检查组织载玻片和细胞学宫颈PAP涂抹幻灯片。该框架在所有三种应用中达到高于0.8的诊断精度,并且AUC值高于0.85。实验证明了拟议框架的一般性和有效性及其对临床应用的潜力。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号