首页> 外文期刊>Neurocomputing >The prior probability in the batch classification of imbalanced data streams
【24h】

The prior probability in the batch classification of imbalanced data streams

机译:在不平衡数据流的批量分类中的现有概率

获取原文
获取原文并翻译 | 示例

摘要

In the diversity of contemporary decision-making tasks, where the data is no longer static and changes over time, data stream processing has become an important issue in the field of pattern recognition. In addition, most of the real problems are not balanced, representing their classes in various improportions. Following paper proposes the Prior Imbalance Compensation method, modifying on-the-fly predictions made by the base classifier, aiming at mapping prior probability in the statistics of assigned classes. It is intended to be a less computationally complex competition for popular algorithms such as SMOTE, solving this problem by oversampling the training set. The proposed method has been tested using computer experiments on the example of a set of various data streams, leading to promising results, suggesting its usefulness in solving this type of problems. (C) 2020 Elsevier B.V. All rights reserved.
机译:在当代决策任务的多样性中,在数据不再静态和随时间变化的情况下,数据流处理已经成为模式识别领域的重要问题。 此外,大多数真正的问题都不平衡,代表他们的各种不正当的课程。 以下论文提出了先前的不平衡补偿方法,修改基本分类器的现行预测,旨在映射分配类的统计信息中的先前概率。 它旨在对诸如SMOTE的流行算法进行较低的计算复杂竞争,通过过采样训练集来解决这个问题。 已经使用计算机实验在一组各种数据流的示例上测试了所提出的方法,从而导致有前途的结果,表明其在解决这种类型的问题方面的用途。 (c)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号