首页> 外文期刊>Journal of computational science >Hellinger Distance Weighted Ensemble for imbalanced data stream classification
【24h】

Hellinger Distance Weighted Ensemble for imbalanced data stream classification

机译:Hellinger距离加权集合用于实施数据流分类

获取原文
获取原文并翻译 | 示例

摘要

The imbalanced data classification remains a vital problem. The key is to find such methods that classify both the minority and majority class correctly. The paper presents the classifier ensemble for classifying binary, nonstationary and imbalanced data streams where the Hellinger Distance is used to prune the ensemble. The paper includes an experimental evaluation of the method based on the conducted experiments. The first one checks the impact of the base classifier type on the quality of the classification. In the second experiment, the Hellinger Distance Weighted Ensemble (HDWE) method is compared to selected state-of-the-art methods using a statistical test with two base classifiers. The method was profoundly tested based on many imbalanced data streams and obtained results proved the HDWE method?s usefulness.
机译:不平衡的数据分类仍然是一个重要问题。 关键是找到正确分类少数群体和多数类的这些方法。 本文介绍了分类器组合,用于分类二进制,非间断和不平衡数据流,其中Hellinger距离用于修剪合奏。 本文包括基于进行实验的方法的实验评价。 第一个检查基本分类器类型对分类质量的影响。 在第二个实验中,将Hellinger距离加权集合(HDWE)方法与使用具有两个基本分类器的统计测试的选择最先进的方法进行比较。 该方法基于许多不平衡的数据流来进行深受测试,并获得了结果证明了HDWE方法的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号