首页> 外文期刊>Neurocomputing >A novel transferability attention neural network model for EEG emotion recognition
【24h】

A novel transferability attention neural network model for EEG emotion recognition

机译:脑电乐情绪识别神经网络模型的一种新型可转移性

获取原文
获取原文并翻译 | 示例

摘要

The existed methods for electroencephalograph (EEG) emotion recognition always train the models based on all the EEG samples indistinguishably. However, some of the source (training) samples may lead to a negative influence because they are significant dissimilar with the target (test) samples. So it is necessary to give more attention to the EEG samples with strong transferability rather than forcefully training a classification model by all the samples. Furthermore, for an EEG sample, from the aspect of neuroscience, not all the brain regions of an EEG sample contain emotional information that can transferred to the test data effectively. Even some brain region data will make strong negative effect for learning the emotional classification model. Considering these two issues, in this paper, we propose a transferable attention neural network (TANN) for EEG emotion recognition, which learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively through local and global attention mechanism. This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator. Extensive experiments on EEG emotion recognition demonstrate that the proposed TANN is superior to those state-of-the-art methods. (c) 2021 Elsevier B.V. All rights reserved.
机译:脑电图(EEG)情感识别的存在方法总是基于所有脑电图难以区分的所有脑电图训练模型。然而,一些来源(训练)样本可能导致负面影响,因为它们与目标(测试)样品具有显着不相似。因此,有必要更加关注具有强大可转换性的脑电图样本,而不是通过所有样品强行培训分类模型。此外,对于eEG样本,从神经科学的方面,EEG样品的所有大脑区域都包含可以有效地转移到测试数据的情绪信息。即使是一些大脑区域数据也将对学习情绪分类模型产生强烈的负面影响。在这篇论文中,考虑到这两个问题,我们提出了可转移的关注神经网络(田南),用于EEG情绪识别,通过突出可转移的脑区数据和通过本地和全球关注机制来突出可转移的脑区数据和样品来学习情绪鉴别信息。这可以通过测量多个脑区级别鉴别器和一个样品级别判别器的输出来实现。关于EEG情绪识别的广泛实验表明,拟议的Tann优于那些最先进的方法。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第4期|92-101|共10页
  • 作者单位

    Xidian Univ Sch Artificial Intelligence Key Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Peoples R China;

    Xidian Univ Sch Artificial Intelligence Key Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Peoples R China;

    Xidian Univ Sch Artificial Intelligence Key Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Peoples R China;

    Xidian Univ Sch Artificial Intelligence Key Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Peoples R China;

    Southeast Univ Sch Biol Sci & Med Engn Key Lab Child Dev & Learning Sci Minist Educ Nanjing 210096 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    EEG emotion recognition; Transferable attention; Brain region;

    机译:EEG情绪识别;可转移注意;脑区;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号