首页> 外文期刊>Neurocomputing >NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns
【24h】

NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns

机译:neuroSense:基于尖刺神经网络建模的短期情感认可和理解时空脑电图模式

获取原文
获取原文并翻译 | 示例

摘要

Emotion recognition still poses a challenge lying at the core of the rapidly growing area of affective com-puting and is crucial for establishing a successful human & ndash;computer interaction. Identification and under-standing of emotions are achieved through various measures, such as subjective self-reports, face-tracking, voice analysis, gaze-tracking, as well as the analysis of autonomic and central neurophysiolog-ical measurements. Current approaches to emotion recognition based on electroencephalography (EEG) mostly rely on various handcrafted features extracted over relatively long time windows of EEG during participants exposure to appropriate affective stimuli. In this paper, we present a short-term emotion recognition framework based on spiking neural network (SNN) modelling of spatio-temporal EEG pat-terns. Our method relies on EEG signal segmentation based on detection of short-term changes in facial landmarks, and as such includes no computation of handcrafted EEG features. Differences between par-ticipants & rsquo; EEG properties are taken into account via subject-dependent spike encoding in the formulated subject-independent emotion recognition task. We test our methods on the publicly available DEAP and MAHNOB-HCI databases due to the availability of both EEG and frontal face video data. Through an exhaustive hyperparameter optimisation strategy, we show that the proposed SNN-based representation of EEG spiking patterns provides valuable information for short-term emotion recognition. The obtained accuracies are 78.97% and 79.39% in arousal classification, and 67.76% and 72.12% in valence classifica-tion, on the DEAP and MAHNOB-HCI datasets, respectively. Furthermore, through the application of a brain-inspired SNN model, this study provides novel insight and helps in the understanding of the neural mechanisms involved in emotional processing in the context of audiovisual stimuli, such as affective videos. The presented results encourage the use of the proposed EEG processing methodology as a com-plement to existing features and methods commonly used for EEG-based emotion recognition, especially for short-term arousal recognition.(c) 2021 Elsevier B.V. All rights reserved.
机译:情感认可仍然呈现出呈现在情感Complif的快速增长领域的核心,并且对于建立成功的人和Ndash是至关重要的;计算机互动。通过各种措施,例如主观自我报告,面部跟踪,语音分析,凝视跟踪以及自主神经生理 - 诊断测量的识别和守信地位。目前基于脑电图(EEG)的情感识别方法主要依赖于参与者在接触适当的情感刺激期间提取的各种手工特征在脑电图中相对较长的时间窗口。在本文中,我们提出了一种基于尖刺神经网络(SNN)模型的短期情感识别框架,即时空EEG PAT-燕鸥。我们的方法依赖于基于面部地标中的短期变化检测的EEG信号分段,因此不包括无手动EEG功能的计算。 Par-Ticipants&Rsquo之间的差异;通过制定的主题独立情感识别任务中的主题依赖性峰值编码考虑EEG属性。我们在公开可用的DEAP和Mahnob-HCI数据库上测试我们的方法,因为eEG和额面视频数据的可用性。通过详尽的绰号优化策略,我们表明,所提出的eEG尖峰模式的基于SNN的表示提供了短期情绪识别的有价值的信息。所得精度分别为78.97%,令人讨厌分类的78.97%,79.39%,在DEAP和Mahnob-HCI数据集上分别为67.76%和72.12%。此外,通过应用脑激发的SNN模型,本研究提供了新颖的洞察力,并有助于了解在视听刺激的背景下的情绪处理中所涉及的神经机制,例如情感视频。所呈现的结果鼓励使用所提出的EEG处理方法作为与基于脑电图的情绪识别的现有特征和方法的COM-pline,特别是对于短期唤起识别。(c)2021 elestvier b.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号