首页> 外文期刊>Neurocomputing >Quality-driven deep active learning method for 3D brain MRI segmentation
【24h】

Quality-driven deep active learning method for 3D brain MRI segmentation

机译:3D脑MRI分割的质量驱动的深度积极学习方法

获取原文
获取原文并翻译 | 示例

摘要

Automatic segmentation of the brain Magnetic Resonance Imaging (MRI) plays a crucial role in many brain MRI processing algorithms, which is effective for the prevention, detection, monitoring, and treatment planning of brain disease. Currently, deep learning algorithms have shown outstanding performance in brain segmentation. Most algorithms train models with fully annotated brain MRI datasets. However, full annotation of 3D brain MRI is laborious and time-consuming. Using sparsely annotated datasets to train models may be one appropriate solution to reduce annotation cost. However, the approach of 3D dense segmentation with sparse annotation has not been fully studied. In this paper, we develop a segmentation framework combined with the quality-driven active learning (QDAL) module for suggestive annotation. In the proposed Active Learning module, attention mechanism and deep supervision mode are used to improve the segmentation accuracy and feedback segmentation quality information. Meanwhile, we observe a high correlation coefficient between the proposed two surrogate metrics and the real segmentation accuracy of per slice in one scan. We validate our framework on two public brain MRI datasets for brain region extraction and brain tissue segmentation. The comparative experiments demonstrate that the QDAL method outperforms the other four popular sampling strategies. The segmentation network with the guidance of the QDAL method only needs 15 & ndash;20% annotated slices in brain extraction task, and 30 & ndash;40% annotated slices in tissue segmentation task to achieve competitive results compared with training with full supervision.(c) 2021 Elsevier B.V. All rights reserved.
机译:脑磁共振成像(MRI)的自动分割在许多脑MRI处理算法中起着至关重要的作用,这对于脑疾病的预防,检测,监测和治疗计划有效。目前,深度学习算法在脑细分中表现出出色的性能。大多数算法列车模型,具有完全注释的脑MRI数据集。然而,3D脑MRI的完全注释是费力且耗时的。使用稀疏注释的数据集训练模型可能是一个适当的解决方案,以减少注释成本。然而,尚未完全研究具有稀疏注释的3D密集分割方法。在本文中,我们开发了一个分割框架,结合了用于暗示注释的质量驱动的主动学习(QDAL)模块。在所提出的主动学习模块中,注意机制和深度监督模式用于提高分割精度和反馈分割质量信息。同时,我们在一个扫描中观察所提出的两个代理度量和每片的真实分割精度之间的高相关系数。我们在两个公共脑线MRI数据集上验证了我们的脑区提取和脑组织细分的框架。比较实验表明,QDAL方法优于其他四种流行的抽样策略。分割网络具有QDAL方法的指导仅需要15&Ndash;脑提取任务中的20%注释切片,30%–组织分割任务中的40%注释切片,与全面监管的培训相比,在组织分割任务中实现竞争结果。( c)2021 Elsevier BV保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号