机译:Hough-CNN:在MRI和超声检查中对深度脑区域进行分割的深度学习
Dept. of Informatics, Technische Universität München;
Dept. of Neurology, Ludwig-Maximilians-University (LMU);
Dept. of Informatics, Technische Universität München;
Dept. of Neurology, Ludwig-Maximilians-University (LMU);
Dept. of Neurology, Ludwig-Maximilians-University (LMU);
Dept. of Neurology, Ludwig-Maximilians-University (LMU);
Dept. of Neurology, Ludwig-Maximilians-University (LMU);
Institute for Clinical Radiology, Ludwig-Maximilians-University (LMU);
Institute for Clinical Radiology, Ludwig-Maximilians-University (LMU);
Dept. of Neurology, Ludwig-Maximilians-University (LMU);
Dept. of Informatics, Technische Universität München;
Convolutional neural networks; Deep learning; Segmentation; Hough voting; Hough CNN; Ultrasound; MRI;
机译:深度学习与常规机器学习:无或轻度血管病理的脑MRI中WMH分割的先行研究
机译:3D脑MRI分割的质量驱动的深度积极学习方法
机译:跨越MRI脑肿瘤细分的SK-TPCNN和随机林的深度学习模型
机译:结合卷积和深度监督的深度学习模型用于多参数MRI中的脑肿瘤分割
机译:用于去抑制运动受影响的脑MRI扫描的深度学习方法
机译:使用基于模型的分割在脑部MRI中进行器官风险分割:基于深度学习的边界检测器的好处
机译:Hough-CNN:mRI中深部脑区域分割的深度学习 和超声波