首页> 外文期刊>Computer vision and image understanding >Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound
【24h】

Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound

机译:Hough-CNN:在MRI和超声检查中对深度脑区域进行分割的深度学习

获取原文
获取原文并翻译 | 示例

摘要

HighlightsWe propose Hough-CNN, a novel segmentation approach based on a voting strategy. We show that the method is multi-modal, multi-region, robust and implicitly encoding priors on anatomical shape and appearance. Hough-CNN delivers results comparable or superior to other state-of-the-art approaches while being entirely registration-free. In particular, it outperforms methods based on voxel-wise, semantic classification.Hough-CNN is scalable to different modalities with little change in parameterisation. We demonstrate multi-region segmentation in MRI and midbrain segmentation in 3D freehand transcranial ultrasound (TCUS).We propose and evaluate several different CNN architectures, with varying numbers of layers and convolutional kernels per layer. In this way we acquire insights on how different network architectures cope with the amount of variability present in medical volumes and image modalities.We evaluate the impact of the number of annotated training examples on the final segmentations by training the networks with different amounts of data. In particular, we show how complex networks with higher parameter number cope with relatively small training datasets.We adapted the Caffe framework to perform convolutions of volumetric data, preserving its third dimension across the whole network. We compare CNN performance using 3D convolution to the more common 2D convolution, as well as to a recent 2.5D approach.AbstractIn this work we propose a novel approach to perform segmentation by leveraging the abstraction capabilities of convolutional neural networks (CNNs). Our method is based on Hough voting, a strategy that allows for fully automatic localisation and segmentation of the anatomies of interest. This approach does not only use the CNN classification outcomes, but it also implements voting by exploiting the features produced by the deepest portion of the network. We show that this learning-based segmentation method is robust, multi-region, flexible and can be easily adapted to different modalities. In the attempt to show the capabilities and the behaviour of CNNs when they are applied to medical image analysis, we perform a systematic study of the performances of six different network architectures, conceived according to state-of-the-art criteria, in various situations. We evaluate the impact of both different amount of training data and different data dimensionality (2D, 2.5D and 3D) on the final results. We show results on both MRI and transcranial US volumes depicting respectively 26 regions of the basal ganglia and the midbrain.
机译: 突出显示 我们提出了Hough-CNN,这是一种基于投票策略的新颖细分方法。我们表明该方法是多模态,多区域,鲁棒和隐式编码先验解剖形状和外观。 Hough-CNN提供的结果可与其他最新方法媲美或相媲美,同时完全无需注册。特别是,它优于基于体素语义分类的方法。 Hough-CNN可扩展到不同的模式,而参数设置几乎没有变化。我们证明了MRI的多区域分割和3D徒手经颅超声(TCUS)的中脑分割。 我们提出并评估了几种不同的CNN架构,它们具有不同的层数和每层卷积核。这样,我们就可以了解不同的网络体系结构如何应对医疗量和图像模态中存在的可变性。 我们通过训练不同数量的网络来评估带注释的训练示例数量对最终细分的影响数据的。特别是,我们展示了具有较高参数编号的复杂网络如何处理相对较小的训练数据集。 我们调整了Caffe框架以进行体积数据的卷积,并在整个网络中保留其第三维。我们将使用3D卷积的CNN性能与更常见的2D卷积以及最近的2.5D方法进行了比较。 摘要 在这项工作中,我们提出了一种利用卷积神经网络抽象能力来执行分割的新颖方法网络(CNN)。我们的方法基于霍夫投票,该策略允许对感兴趣的解剖结构进行全自动定位和分割。这种方法不仅使用CNN分类结果,而且还通过利用网络最深层部分产生的功能来实现投票。我们表明,这种基于学习的分割方法是鲁棒的,多区域的,灵活的,并且可以轻松地适应不同的模态。为了展示CNN在医学图像分析中的功能和行为,我们对六种不同网络体系结构的性能进行了系统的研究,这些体系结构是根据最新标准在各种情况下构想的。我们评估了不同数量的训练数据和不同数据维度(2D,2.5D和3D)对最终结果的影响。我们在MRI和经颅美国量显示结果,分别描述了基底神经节和中脑的26个区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号