首页> 外文期刊>Neurocomputing >Inter-patient ECG arrhythmia heartbeat classification based on unsupervised domain adaptation
【24h】

Inter-patient ECG arrhythmia heartbeat classification based on unsupervised domain adaptation

机译:基于无监督域适应的患者间患有ECG心律失常的心跳分类

获取原文
获取原文并翻译 | 示例

摘要

Electrocardiography (ECG) arrhythmia heartbeat classification is essential for automatic cardiovascular diagnosis system. However, the enormous differences of ECG signals among individuals and high price of labeled data have brought huge challenges for current classification algorithms based on deep neural networks and prevented these models from achieving satisfactory performance on new data. In order to build a classification system with better adaptability, we propose a novel Domain-Adaptative ECG Arrhythmia Classification (DAEAC) model based on convolutional network and unsupervised domain adaptation (UDA). Based on observation of clustering characteristics of data, we present two original objective functions to enhance the inter-patient performance. A Cluster-Aligning loss is presented to align the distributions of training data and test data. Simultaneously, a Cluster-Maintaining loss is proposed to reinforce the discriminability and structural information of features. The proposed method requires no expert annotations but a short period of unsupervised data in new records to make deep models more adaptive. Extensive experimental results on three public databases demonstrate that our method achieves competitive performance with other state-of-the-arts on the detection of ventricular ectopic beats (V), supraventricular ectopic beats (S) and fusion beats (F). The cross-dataset experimental results also verify the great generalization capability. CO 2021 Elsevier B.V. All rights reserved.
机译:心电图(ECG)心律失常分类对于自动心血管诊断系统至关重要。然而,基于深度神经网络的当前分类算法带来了巨大的ECG信号的巨大差异对当前的分类算法带来了巨大的挑战,并阻止了这些模型在新数据上实现了令人满意的性能。为了构建具有更好适应性的分类系统,我们提出了一种基于卷积网络和无监督域适应(UDA)的新型域适应性ECG心律失常分类(DAEAC)模型。基于对数据集群特征的观察,我们提高了两个原始客观函数来增强患者间性能。呈现群集对准损耗以对准训练数据和测试数据的分布。同时,提出了维持群体以加强特征的可怜和结构信息。该提议的方法不需要专家注释,但新记录中的未经监督数据短期内,以使深度模型更加自适应。三个公共数据库的广泛实验结果表明,我们的方法在检测心室异位搏动(V),Supraventriculary Ececcic Beats(F)上,我们的方法与其他最先进的竞争性能达到竞争性能。交叉数据集实验结果还验证了伟大的概括能力。 CO 2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第24期|339-349|共11页
  • 作者单位

    Tsinghua Univ Beijing Peoples R China|Beijing Innovat Ctr Future Chips ICFC Beijing Peoples R China;

    Tsinghua Univ Beijing Peoples R China;

    Tsinghua Univ Beijing Peoples R China;

    Tsinghua Univ Beijing Peoples R China;

    Tsinghua Univ Beijing Peoples R China|Beijing Innovat Ctr Future Chips ICFC Beijing Peoples R China;

    Beijing Tsinghua Changgung Hosp Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ECG heartbeat classification; Deep learning; Unsupervised domain adaptation;

    机译:ECG心跳分类;深入学习;无监督域适应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号