首页> 外文期刊>Biomedical signal processing and control >Inter-patient heartbeat classification based on region feature extraction and ensemble classifier
【24h】

Inter-patient heartbeat classification based on region feature extraction and ensemble classifier

机译:基于区域特征提取和集成分类器的患者间心跳分类

获取原文
获取原文并翻译 | 示例

摘要

The electrocardiogram (ECG) is an important tool for detecting arrhythmia. To solve the limitations of visual inspection, computer-aided diagnosis appears and grows rapidly. Most of the reported researches for heartbeat classification were based on intra-patient dataset. Moreover, existing inter-patient researches were usually conducted for superclasses of arrhythmia. To classify specific types of arrhythmia, this study proposed an inter-patient heartbeat classification method based on region feature extraction and ensemble classifier. The proposed method is composed of four stages. In preprocessing stage, the ECG signal is filtered and proportionally segmented. Afterwards, heartbeats are divided into three regions and region features are extracted. Subsequently, the dimension of features is reduced and all the features are fused and normalized. Eventually, an ensemble classifier is employed for the classification of Normal (N), Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), Atrial Premature Contraction (APC) and Ventricular Premature Contraction (VPC). The method was applied to a new dataset divided from MIT-BIH arrhythmia database. The obtained sensitivities for Normal, LBBB, RBBB, APV and VPC were 95.0%, 27.9%, 79.6%, 81.8% and 88.1%. A comparative experiment demonstrated that the proposed region feature extraction method improves the accuracy of arrhythmia classification. The new division of MIT-BIH arrhythmia database is also advised to other researchers. (C) 2019 Elsevier Ltd. All rights reserved.
机译:心电图(ECG)是检测心律不齐的重要工具。为了解决视觉检查的局限性,计算机辅助诊断出现并迅速发展。大多数关于心跳分类的报道研究都是基于患者内数据集。而且,现有的患者间研究通常是针对心律失常的超类进行的。为了对特定类型的心律失常进行分类,本研究提出了一种基于区域特征提取和集成分类器的患者间心跳分类方法。所提出的方法包括四个阶段。在预处理阶段,对ECG信号进行滤波并按比例分段。然后,将心跳分为三个区域并提取区域特征。随后,缩小特征的尺寸,并融合所有特征并将其标准化。最终,采用整体分类器对正常(N),左束支传导阻滞(LBBB),右束支传导阻滞(RBBB),房性早搏(APC)和室性早搏(VPC)进行分类。该方法被应用于从MIT-BIH心律失常数据库中划分的新数据集。正常,LBBB,RBBB,APV和VPC的灵敏度分别为95.0%,27.9%,79.6%,81.8%和88.1%。对比实验表明,提出的区域特征提取方法提高了心律失常分类的准确性。 MIT-BIH心律失常数据库的新部门也被建议给其他研究人员。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号