首页> 外文期刊>Neurocomputing >Learning noise-decoupled affine models for extreme low-light image enhancement
【24h】

Learning noise-decoupled affine models for extreme low-light image enhancement

机译:用于极端低光图像增强的噪声解耦仿射模型

获取原文
获取原文并翻译 | 示例

摘要

How to handle the noise effectively is an important yet challenging problem for low-light image enhancement especially in real-world extreme low-light conditions. Furthermore, contrast enhancement and noise removal are coupled problems, it & rsquo;s hard to trade off well between noise suppression and preservation of details. To this end, this paper proposes an end-to-end network for low-light image enhancement with a particular focus on handling this coupling relationship. The basic idea is to convert low-light image enhancement to local affine color transformations. Instead of image smooth denoising, a special noise processing mechanism is proposed to learn noise-decoupled affine models. Alternatively, to achieve efficient learning, the whole network is trained in bilateral space. Extensive experiments on several benchmark datasets have shown that the proposed method is very competitive to state-of-the-art methods. Especially when processing images captured in extreme low-light conditions, it has a significant advantage over other algorithms in reducing noise while retaining image details.(c) 2021 Elsevier B.V. All rights reserved.
机译:如何处理噪声是低光图像增强的重要又具有挑战性的问题,特别是在真实世界极端的低光线条件下。此外,对比增强和噪声去除是耦合问题,IT和rsquo;难以在噪声抑制和保存细节之间脱离。为此,本文提出了一种用于低光图像增强的端到端网络,特别侧重于处理该耦合关系。基本思想是将低光图像增强转换为局部仿射彩色变换。提出了一种特殊的噪声处理机制而不是图像平滑去噪,以学习噪声解耦的仿射模型。或者,为了实现高效的学习,整个网络受到双边空间的培训。在多个基准数据集上的广泛实验表明,该方法对最先进的方法非常竞争。特别是当处理在极端低光条件下捕获的图像时,它在还原噪声的其他算法中具有显着的优势,同时保持图像细节。(c)2021 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第11期|21-29|共9页
  • 作者单位

    Northwest Univ Sch Informat & Technol Xian 710127 Shaanxi Peoples R China;

    Xian Microelect Technol Inst Xian Shaanxi Peoples R China;

    Northwest Univ Sch Informat & Technol Xian 710127 Shaanxi Peoples R China|Xian Microelect Technol Inst Xian Shaanxi Peoples R China;

    Northwest Univ Sch Informat & Technol Xian 710127 Shaanxi Peoples R China;

    Northwest Univ Sch Informat & Technol Xian 710127 Shaanxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Low-light image enhancement; Noise suppression; Local affine color transformation;

    机译:低光图像增强;噪声抑制;局部仿射彩色变换;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号