首页> 外文期刊>Mathematical Problems in Engineering >A Low-Light Image Enhancement Method Based on Image Degradation Model and Pure Pixel Ratio Prior
【24h】

A Low-Light Image Enhancement Method Based on Image Degradation Model and Pure Pixel Ratio Prior

机译:基于图像退化模型和先验纯像素比的弱光图像增强方法

获取原文
获取原文并翻译 | 示例

摘要

Images captured in low-light conditions are prone to suffer from low visibility, which may further degrade the performance of most computational photography and computer vision applications. In this paper, we propose a low-light image degradation model derived from the atmospheric scattering model, which is simple but effective and robust. Then, we present a physically valid image prior named pure pixel ratio prior, which is a statistical regularity of extensive nature clear images. Based on the proposed model and the image prior, a corresponding low-light image enhancement method is also presented. In this method, we first segment the input image into scenes according to the brightness similarity and utilize a high-efficiency scene-based transmission estimation strategy rather than the traditional per-pixel fashion. Next, we refine the rough transmission map, by using a total variation smooth operator, and obtain the enhanced image accordingly. Experiments on a number of challenging nature low-light images verify the effectiveness and robustness of the proposed model, and the corresponding method can show its superiority over several state of the arts.
机译:在弱光条件下捕获的图像容易遭受低能见度的影响,这可能进一步降低大多数计算摄影和计算机视觉应用程序的性能。在本文中,我们提出了一种基于大气散射模型的弱光图像退化模型,该模型简单但有效且鲁棒。然后,我们提出一个物理上有效的图像优先级,称为纯像素比率优先级,这是广泛的自然清晰图像的统计规律。基于提出的模型和图像先验,提出了相应的微光图像增强方法。在这种方法中,我们首先根据亮度相似度将输入图像分割为多个场景,并利用一种基于场景的高效传输估计策略,而不是传统的逐像素方式。接下来,我们通过使用总变化量平滑算子来细化粗糙的透射图,并相应地获得增强的图像。在许多具有挑战性的自然弱光图像上进行的实验验证了所提出模型的有效性和鲁棒性,并且相应的方法可以显示出其相对于几种现有技术的优越性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第9期|8178109.1-8178109.19|共19页
  • 作者单位

    Nanjing Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Nanjing, Jiangsu, Peoples R China;

    Nanjing Coll Informat Technol, Nanjing, Jiangsu, Peoples R China;

    Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号