首页> 外文期刊>Neurocomputing >L2AE-D: Learning to Aggregate Embeddings for Few-shot Learning with Meta-level Dropout
【24h】

L2AE-D: Learning to Aggregate Embeddings for Few-shot Learning with Meta-level Dropout

机译:L2AE-D:使用Meta级辍学措施来学习eMbeddings进行几次拍摄学习

获取原文
获取原文并翻译 | 示例

摘要

Few-shot learning focuses on learning a new visual concept with very limited labelled examples. A suc-cessful approach to tackle this problem is to compare the similarity between examples in a learned met-ric space based on convolutional neural networks. However, existing methods typically suffer from meta-level overfitting due to the limited amount of training tasks and do not normally consider the importance of the convolutional features of different examples within the same channel. To address these limitations, we make the following two contributions: (a) We propose a novel meta-learning approach for aggregat -ing useful convolutional features and suppressing noisy ones based on a channel-wise attention mecha-nism to improve class representations. The proposed model does not require fine-tuning and can be trained in an end-to-end manner. The main novelty lies in incorporating a shared weight generation module that learns to assign different weights to the feature maps of different examples within the same channel. (b) We also introduce a simple meta-level dropout technique that reduces meta-level overfitting in several few-shot learning approaches. In our experiments, we find that this simple technique signifi-cantly improves the performance of the proposed method as well as various state-of-the-art meta-learning algorithms. Applying our method to few-shot image recognition using Omniglot and miniImageNet datasets shows that it is capable of delivering a state-of-the-art classification performance. ? 2021 Elsevier B.V. All rights reserved.
机译:很少拍摄的学习侧重于学习一个新的视觉概念,非常有限标记的例子。一种成功的解决这个问题的方法是基于卷积神经网络比较学习的欧洲RIC空间中的示例之间的相似性。然而,由于培训任务数量有限,现有方法通常由于数量有限的培训任务而遭受元级过度装备,并且通常不会考虑同一频道内不同示例的卷积特征的重要性。为了解决这些限制,我们提出了以下两项贡献:(a)我们提出了一种新的元学习方法,用于汇集有用的卷积特征和基于渠道的渠道注意机械,抑制嘈杂的噪音,以改善类别表示。所提出的模型不需要微调,可以以端到端的方式训练。主要的新颖性在于结合共享权重生成模块,该模块学习将不同权重分配给同一信道内的不同示例的特征映射。 (b)我们还介绍了一种简单的元级辍学技术,可降低几次几次拍摄的学习方法中的元级过度拟合。在我们的实验中,我们发现,这个简单的技术signifi-着地提高了算法的性能以及国家的最先进的各种元学习算法。使用omniglot和miniimagenet数据集将方法应用于几滴图像识别,显示它能够提供最先进的分类性能。还是2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号