首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Hypersphere-Based Weight Imprinting for Few-Shot Learning on Embedded Devices
【24h】

Hypersphere-Based Weight Imprinting for Few-Shot Learning on Embedded Devices

机译:在嵌入式设备上几次学习的基于极度的重量印迹

获取原文
获取原文并翻译 | 示例

摘要

Weight imprinting (WI) was recently introduced as a way to perform gradient descent-free few-shot learning. Due to this, WI was almost immediately adapted for performing few-shot learning on embedded neural network accelerators that do not support back-propagation, e.g., edge tensor processing units. However, WI suffers from many limitations, e.g., it cannot handle novel categories with multimodal distributions and special care should be given to avoid overfitting the learned embeddings on the training classes since this can have a devastating effect on classification accuracy (for the novel categories). In this article, we propose a novel hypersphere-based WI approach that is capable of training neural networks in a regularized, imprinting-aware way effectively overcoming the aforementioned limitations. The effectiveness of the proposed method is demonstrated using extensive experiments on three image data sets.
机译:最近将重量印记(WI)作为执行梯度下降的几次学习的方法。由此,WI几乎立即适用于对不支持反向传播的嵌入式神经网络加速器进行几次拍摄的学习,例如,边缘张量处理单元。然而,WI遭受了许多限制,例如,它不能处理具有多模式分布的新型类别,并且应该特别注意避免在培训类上过度灌注,因为这可以对分类准确性具有毁灭性影响(用于小型类别) 。在本文中,我们提出了一种新的基于Sypersphere的WI方法,该方法能够以正规化的,印记的感知方式培训神经网络,从而有效地克服上述限制。在三个图像数据集上使用广泛的实验证明了所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号