首页> 外文期刊>Neurocomputing >Generative adversarial networks for single channel separation of convolutive mixed speech signals
【24h】

Generative adversarial networks for single channel separation of convolutive mixed speech signals

机译:用于单通道分离卷曲混合语音信号的生成对抗网络

获取原文
获取原文并翻译 | 示例

摘要

The suppression of interference for speech recognition is of great significance in noisy situation, especially in single channel receiving mode, the suppression of interference is much more difficult. In this paper, we propose a generative adversarial network (GAN) based method for single channel dereverberation and speech separation. Different from the existing methods, our method considers the influence of strong reverberation on the observed signals. The proposed network involves two parts: reverberation suppression and target speech enhancement. Firstly, we use an improved CyclyGAN to compensate the multi-path effect on both target speech and interference. Secondly, we propose a differentialGAN to extract both target speech and interference while the interference enhancement network can indirectly improve the performance of target speech enhancement network. We use the real and imaginary parts of the complex spectrum as the feature vector, which avoids the phase mismatch during signal recovery. Simulation results show that our method is superior to its competitors in terms of multiple metrics in severe reverberation environment.(c) 2021 Elsevier B.V. All rights reserved.
机译:对语音识别的干扰的抑制在嘈杂的情况下具有重要意义,特别是在单通道接收模式中,抑制干扰更加困难。在本文中,我们提出了一种基于生成的对抗网络(GaN)的单通道DERERERATION和语音分离方法。不同于现有方法,我们的方法考虑了强烈混响对观察信号的影响。所提出的网络涉及两部分:混响抑制和目标语音增强。首先,我们使用改进的Cyclygan来补偿对目标语音和干扰的多路径效应。其次,我们提出了一个不同的地,以提取目标语音和干扰,而干扰增强网络可以间接提高目标语音增强网络的性能。我们使用复杂频谱的真实和虚部作为特征向量,这避免了信号恢复期间的相位不匹配。仿真结果表明,在严重的混响环境中,我们的方法优于其竞争对手。(c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号