首页> 外文期刊>Computer speech and language >Local and non-local dependency learning and emergence of rule-like representations in speech data by deep convolutional generative adversarial networks
【24h】

Local and non-local dependency learning and emergence of rule-like representations in speech data by deep convolutional generative adversarial networks

机译:深度卷积生成对冲网络,局部和非本地依赖学习和语音数据中的规则样式的出现

获取原文
获取原文并翻译 | 示例

摘要

This paper argues that training Generative Adversarial Networks (GANs) on local and non-local dependencies in speech data offers insights into how deep neural networks discretize continuous data and how symbolic-like rule-based morphophonological processes emerge in a deep convolutional architecture. Acquisition of speech has recently been modeled as a dependency between latent space and data generated by GANs in Begus (2020b), who models learning of a simple local allophonic distribution. We extend this approach to test learning of local and nonlocal phonological processes that include approximations of morphological processes. We farther parallel outputs of the model to results of a behavioral experiment where human subjects are trained on the data used for training the GAN network. Four main conclusions emerge: (i) the networks provide useful information for computational models of speech acquisition even if trained on a comparatively small dataset of an artificial grammar learning experiment; (ii) local processes are easier to learn than non-local processes, which matches both behavioral data in human subjects and typology in the world's languages. This paper also proposes (iii) how we can actively observe the network's progress in learning and explore the effect of training steps on learning representations by keeping latent space constant across different training steps. Finally, this paper shows that (iv) the network learns to encode the presence of a prefix with a single latent variable; by interpolating this variable, we can actively observe the operation of a non-local phonological process. The proposed technique for retrieving learning representations has general implications for our understanding of how GANs discretize continuous speech data and suggests that rule-like generalizations in the training data are represented as an interaction between variables in the network's latent space.
机译:本文认为,语音数据中的本地和非本地依赖性的培训生成对抗性网络(GAN)提供了深度神经网络如何离散数据以及如何在深度卷积架构中出现的深度神经网络的洞察。近期收购语音最近被建模为潜伏空间和由GENS(2020B)产生的潜在空间和数据之间的依赖关系,他们模拟了一种简单的本地混合分布。我们扩展了这种方法来测试局部和非本地语音过程的学习,包括形态过程的近似。我们将模型的平行输出更远,以对用于训练GaN网络的数据培训人类受试者的行为实验的结果。四个主要结论出现:(i)网络为语音采集的计算模型提供了有用的信息,即使在人工语法学习实验的比较小数据集上培训; (ii)本地流程比非本地进程更容易学习,该过程与世界语中的人类受试者的行为数据与世界语言的类型相匹配。本文还提出(iii)如何通过对不同培训步骤保持潜空间常数保持潜在空间持续,探讨我们如何积极地观察网络的学习进度,探讨培训步骤对学习表示的影响。最后,本文显示了(iv)网络学习用单个潜变量编码前缀的存在;通过插入此变量,我们可以积极观察非本地语音过程的操作。提出的检索学习表示的技术对我们的理解,我们对GANS如何离散化连续语音数据的理解,并表明训练数据中的规则概括被表示为网络潜在空间中变量之间的交互。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号