首页> 外文期刊>Neurocomputing >NGDNet: Nonuniform Gaussian-label distribution learning for infrared head pose estimation and on-task behavior understanding in the classroom
【24h】

NGDNet: Nonuniform Gaussian-label distribution learning for infrared head pose estimation and on-task behavior understanding in the classroom

机译:NGDNet:红外线头部姿势估算和课堂上的任务行为理解的非均匀高斯 - 标签分布学习

获取原文
获取原文并翻译 | 示例

摘要

Head pose estimation (HPE) under active infrared (IR) illumination has attracted much attention in the fields of computer vision and machine learning. However, IRHPE often suffers from the problems of low-quality IR images and ambiguous head pose. To tackle these issues, we propose a novel nonuniform Gaussian-label distribution learning network (NGDNet) for the HPE task. First, we reveal the essential properties from two different perspectives: 1) two head pose images change differently in pitch and yaw directions with the same angle increasing on the central pose; 2) the IR head pose variation first increases and then decreases in the pitch direction. Subsequently, the first property indicates the pose image label as a nonuniform label distribution (Gaussian function) with different long and short axes. The second property is leveraged to determine the distribution size in accordance with the similarities of adjacent hand poses. Lastly, the proposed NGDNet is verified on a new IRHPE dataset, which is built by our research group. Experimental results on several datasets demonstrate the effectiveness of the proposed model. Compared with conventional algorithms, our NGDNet model achieves state-of-the-art performance with 77.39% on IRHPE, 99.08% on CAS-PEAL-R1, and 87.41% on Pointing & rsquo;04. Our code is publicly available at https://github.com/TingtingSL/NGDNet.(c) 2021 Elsevier B.V. All rights reserved.
机译:下主动红外(IR)照射头姿势估计(HPE)备受关注在计算机视觉和机器学习的领域。然而,IRHPE往往是从低质量的红外图像和模糊的头部姿势的问题困扰。为了解决这些问题,我们提出了HPE任务新颖的非均匀高斯标签分发学习网络(NGDNet)。首先,我们从两个不同的角度揭示的基本属性:1)两个头部姿势图像与相同的角度在中心姿态增大俯仰和偏转方向不同的变化; 2)IR头部姿势变化先增大后在俯仰方向上减小。随后,第一属性指示所述姿势图像标签作为标签不均匀分布(高斯函数)具有不同的长轴和短轴。第二属性是杠杆,以确定按照相邻的手姿势的相似的分布的大小。最后,建议NGDNet是在一个新的数据集IRHPE,这是由我们的研究小组建立验证。几个数据集实验结果证明了该模型的有效性。与传统的方法相比,我们的模型NGDNet实现状态的最先进的性能与IRHPE 77.39%,在CAS-PEAL-R1 99.08%,和87.41%的指点&rsquo的; 04。我们的代码是公开的,在https://github.com/TingtingSL/NGDNet.(c)2021保留爱思唯尔B.V.所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号