首页> 外文期刊>IEEE transactions on industrial informatics >Automation of Recording in Smart Classrooms via Deep Learning and Bayesian Maximum a Posteriori Estimation of Instructor's Pose
【24h】

Automation of Recording in Smart Classrooms via Deep Learning and Bayesian Maximum a Posteriori Estimation of Instructor's Pose

机译:通过深入学习和贝叶斯录制在智能教室中录制自动化讲师姿势的后验估计

获取原文
获取原文并翻译 | 示例

摘要

Internet of Things is making objects smarter and more autonomous. At the other side, online education is gaining momentum and many universities are now offering online degrees. Content preparation for such programs usually involves recording the classes. In this article, we intend to introduce a deep learning-based camera management system as a substitute for the academic filming crew. The solution mainly consists of two cameras and a wearable gadget for the instructor. The fixed camera is used for the instructor's position and pose detection and the pan-tilt-zoom (PTZ) camera does the filming. In the proposed solution, image processing and deep learning techniques are merged together. Face recognition and skeleton detection algorithms are used to detect the position of instructor. But the main contribution lies in the application of deep learning for instructor's skeleton detection and postprocessing of the deep network output for correction of the pose detection results using a Bayesian Maximum A Posteriori (MAP) estimator. This estimator is defined on a Markov state machine. The pose detection result along with the position info is then used by the PTZ camera controller for filming purposes. The proposed solution is implemented by using OpenPose which is a convolutional neural network for detection of body parts. Feeding a neural network pose classifier with 12 features extracted from the output of the deep network yields an accuracy of 89%. However, as we show, the accuracy can be improved by the Markov model and MAP estimator to reach as high as 95.5%.
机译:事情互联网正在使物体更聪明,更自主。在另一方面,在线教育正在获得势头,许多大学现在提供在线学位。此类程序的内容准备通常涉及记录类。在本文中,我们打算将基于深度学习的相机管理系统引入学术拍摄机组人员的替代品。该解决方案主要包括两个摄像机和指导员的可穿戴小工具。固定摄像机用于指导员的位置和姿势检测,泛倾斜变焦(PTZ)相机进行拍摄。在所提出的解决方案中,图像处理和深度学习技术合并在一起。面部识别和骨架检测算法用于检测教练的位置。但主要贡献在于深度学习的应用程序的骨架检测和深网络输出的后处理,用于使用贝叶斯最大的后验(MAP)估计器来校正姿势检测结果。此估算器在Markov状态机上定义。然后,PTZ摄像机控制器将姿势检测结果与位置信息一起用于拍摄目的。所提出的解决方案是通过使用Open卷积来实现的,该卷积神经网络用于检测身体部位。喂养一个神经网络姿势分类器,从深网络输出中提取有12个功能,产生89%的精度。但是,正如我们所示,马尔可夫模型和地图估计器可以提高准确度,以达到高达95.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号