首页> 外文期刊>Neurocomputing >Anisotropic angle distribution learning for head pose estimation and attention understanding in human-computer interaction
【24h】

Anisotropic angle distribution learning for head pose estimation and attention understanding in human-computer interaction

机译:人体计算机互动的头部姿态估计和注意力的各向异性角度分布

获取原文
获取原文并翻译 | 示例

摘要

Head pose estimation is an important way to understand human attention in the human-computer interaction. In this paper, we propose a novel anisotropic angle distribution learning (AADL) network for head pose estimation task. Firstly, two key findings are revealed as following: 1) Head pose image variations are different at the yaw and pitch directions with the same pose angle increasing on a fixed central pose; 2) With the fixed angle interval increasing, the image variations increase firstly and then decrease in yaw angle direction. Then, the maximum a posterior technology is employed to construct the head pose estimation network, which includes three parts, such as convolutional layer, covariance pooling layer and output layer. In the output layer, the labels are constructed as the anisotropic angle distributions on the basis of two key findings. And the anisotropic angle distributions are fitted by the 2D Gaussian like distributions (groundtruth labels). Furthermore, the Kullback-Leibler divergence is selected to measure the predication label and the groundtruth one. The features of head pose images are perceived at the AADL-based convolutional neural network in an end-to-end manner. Experimental results demonstrate that the developed AADL-based labels have several advantages, such as robustness for head pose image missing, insensitivity for the motion blur. Moreover, the proposed method has achieved good performance compared to several state-of-the-art methods on the Pointing'04 and CAS_PEAL_R1 databases.(c) 2020 Elsevier B.V. All rights reserved.
机译:头部姿态估计是了解在人机交互的人关注的一个重要途径。在本文中,我们提出了头部姿势估计任务新颖的各向异性的角度分布学习(AADL)网络。首先,两个关键的发现揭示如下:1)头部姿势图像变化是在以相同的姿势角度上固定的中央姿态增大偏转和俯仰方向的不同; 2)在固定角度间隔的增加,图像的变化先增加然后在偏航角方向减小。然后,最大后验技术被用来构建所述头部姿势估计网络,它包括三个部分,诸如卷积层,协方差池层和输出层。在输出层中,标签被构造为两个重要发现的基础上,所述各向异性角度分布。和各向异性角度分布是通过将2D高斯等分布(真实状况的标签),其装配。此外,相对熵被选择以测量预测标签和真实状况之一。头部姿势图像的特征在端至端的方式基于AADL-卷积神经网络被感知。实验结果表明,开发了基于AADL的标签有几个优点,如鲁棒性头造型图像丢失,不敏感的运动模糊。此外,相比于国家的最先进的几个上Pointing'04和CAS_PEAL_R1数据库的方法,该方法取得了良好的性能。保留(c)中2020爱思唯尔B.V.所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号