首页> 外文期刊>Neurocomputing >Entropy guided adversarial model for weakly supervised object localization
【24h】

Entropy guided adversarial model for weakly supervised object localization

机译:跨监督对象本地化的熵导体模型

获取原文
获取原文并翻译 | 示例

摘要

Weakly Supervised Object Localization is challenging due to the lack of bounding box annotations. Previous works tend to generate a Class Activation Map (CAM) to localize the object. However, the CAM highlights only the most discirminative part of the object and does not highlight the whole object. To address this problem, we propose an Entropy Guided Adversarial model (EGA model) to perform better localization of objects. EGA model uses adversarial learning method to create adversarial examples, i.e., images where a perturbation is added. Treating adversarial examples as data augmentation regularize our model as well as detect more discriminative visual pattern on the CAM. We further apply the Shannon entropy on the generated CAM to guide the model during training. Minimizing the entropy loss forces the model to generate a high-confident CAM. The high-confident CAM detects the whole object while excludes the background. Extensive experiments show that EGA model improves classification and localization performances on state-of-the-art benchmarks. Ablation experiments also show that both the adversarial learning and the entropy loss contribute to the algorithm performance. (C) 2020 Elsevier B.V. All rights reserved.
机译:由于缺乏边界盒注释,弱势监督对象本地化是挑战。以前的作品倾向于生成类激活映射(CAM)以本地化对象。但是,CAM仅突出显示对象的最具消泡部分,并且不突出整个对象。为了解决这个问题,我们提出了一种熵导导体模型(EGA模型)来执行更好的对象本地化。 EGA模型使用侵犯学习方法来创建对抗性示例,即添加扰动的图像。将对抗性示例视为数据增强正规化我们的模型以及检测凸轮上的更多辨别性视觉模式。我们进一步将Shannon熵应用于所生成的CAM,以指导培训期间的模型。最小化熵损失迫使模型产生高自信的凸轮。高自信的凸轮在排除背景时检测到整个物体。广泛的实验表明,EGA模型可提高最先进的基准测试的分类和本地化表现。消融实验还表明,对抗性学习和熵损失都有助于算法性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号