首页> 外文期刊>Neurocomputing >IT2-GSETSK: An evolving interval Type-Ⅱ TSK fuzzy neural system for online modeling of noisy data
【24h】

IT2-GSETSK: An evolving interval Type-Ⅱ TSK fuzzy neural system for online modeling of noisy data

机译:IT2-GSETSK:一种不断变化的间隔类型-ⅡTSK模糊神经系统,用于嘈杂数据的在线建模

获取原文
获取原文并翻译 | 示例

摘要

As a core part of a fuzzy neural system, the rule base antecedents and consequents may carry uncer-tainties because they are trained using noisy data. So, handling the uncertain rule base is an important need in some specific problems such as noisy non-dynamic problems which leads a better data model-ing. As a solution, Interval Type-II (IT2) version of GSETSK (Generic Self-Evolving Takagi-Sugeno-Kang), namely IT2-GSETSK, is presented in this paper. This solution uses IT2 membership functions for handling uncertainties, plus having Type-I (GSETSK) capabilities. In this way IT2-GSETSK is a fully-online model able to handle data streams and cope with time-variant data. It also provides up-to-date, relevant and compact rule base that is easily interpretable by human. The IT2-GSETSK is tested over several applica-tions including medical, environmental and financial predictions, which show satisfactory performance of IT2-GSETSK. Moreover, it is observed that while GSETSK performs well enough for dynamic problems with less noise, noisy non-dynamic problems benefit significantly from IT2-GSETSK. (C) 2020 Elsevier B.V. All rights reserved.
机译:作为模糊神经系统的核心部分,规则基础前一种和后果可能携带尚不特性,因为它们是使用噪声数据训练的。因此,处理不确定的规则库是一些特定问题的重要需求,例如嘈杂的非动态问题,这导致更好的数据模型。作为解决方案,本文介绍了GSETK(通用自我发展Takagi-Sugeno-kang)的间隔Type-II(IT2)版本,即IT2-GSETK。该解决方案使用IT2隶属函数来处理不确定性,以及具有类型-i(GSETSK)功能。以这种方式,IT2-GSETSK是一个完全在线模型,能够处理数据流和应对时间变量数据的数据流。它还提供最新,相关和紧凑的规则基础,这些群很容易被人类解释。 IT2-GSETSK在包括医疗,环境和财务预测的几种应用中测试,这表明IT2-GSETSK的令人满意的表现。此外,观察到,在GSETSK足够好的时足以使噪音较小的动态问题,从IT2-GSETK中有显着效益。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第24期|1-11|共11页
  • 作者单位

    Nanyang Technol Univ Sch Comp Sci & Engn Computat Intelligence Lab 50 Nanyang Ave Singapore 639798 Singapore|Singapore Univ Technol & Design SUTD iTrust Ctr Res Cyber Secur 8 Somapah Rd Singapore 487372 Singapore;

    UiT Arctic Univ Norway Dept Comp Sci N-9037 Tromso Norway;

    Nanyang Technol Univ Sch Comp Sci & Engn Computat Intelligence Lab 50 Nanyang Ave Singapore 639798 Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Type-II; Self-evolving; GSETSK; Neuro-fuzzy; Noisy data; Non-stationary;

    机译:II型;自我不断发展;GSETSK;神经模糊;嘈杂的数据;非静止;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号