首页> 外文期刊>Neurocomputing >D-VPnet: A network for real-time dominant vanishing point detection in natural scenes
【24h】

D-VPnet: A network for real-time dominant vanishing point detection in natural scenes

机译:D-VPNET:用于自然场景中实时占主导地位消失点检测的网络

获取原文
获取原文并翻译 | 示例

摘要

As an important part of linear perspective, vanishing points (VPs) provide useful clues for mapping objects from 2D photos to 3D space. Existing methods are mainly focused on extracting structural features such as lines or contours and then clustering these features to detect VPs. However, these techniques suffer from ambiguous information due to the large number of line segments and contours detected in outdoor environments. In this paper, we present a new convolutional neural network (CNN) to detect dominant VPs in natural scenes, i.e., the Dominant Vanishing Point detection Network (D-VPnet). The key component of our method is the feature line-segment proposal unit (FLPU), which can be directly utilized to predict the location of the dominant VP. Moreover, the model also uses the two main parallel lines as an assistant to determine the position of the dominant VP. The proposed method was tested using a public dataset and a Parallel Line based Vanishing Point (PLVP) dataset. The experimental results suggest that the detection accuracy of our approach outperforms those of state-of-the-art methods under various conditions in real-time, achieving rates of 115 fps. (C) 2020 Elsevier B.V. All rights reserved.
机译:作为线性角度的重要组成部分,消失点(VPS)提供了用于将物体从2D照片映射到3D空间的有用线索。现有方法主要集中在提取诸如线路或轮廓的结构特征,然后聚类这些功能以检测VPS。然而,由于在室外环境中检测到的大量线段和轮廓,这些技术遭受了模糊的信息。在本文中,我们提出了一种新的卷积神经网络(CNN),用于检测自然场景中的主导VPS,即主导消失点检测网络(D-VPNET)。我们方法的关键组件是特征线段提案单元(FLPU),其可以直接用于预测优势VP的位置。此外,该模型还使用两个主要并行线作为助理来确定主导VP的位置。使用公共数据集和基于并行线的消失点(PLVP)数据集进行测试。实验结果表明,我们方法的检测准确性优于实时条件下的最先进方法,实现了115 FPS的率。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第5期|432-440|共9页
  • 作者单位

    Tianjin Univ Sch Elect & Informat Engn Tianjin Key Lab Proc Measurement & Control Inst Robot & Autonomous Syst Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Elect & Informat Engn Tianjin Key Lab Proc Measurement & Control Inst Robot & Autonomous Syst Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Elect & Informat Engn Tianjin Key Lab Proc Measurement & Control Inst Robot & Autonomous Syst Tianjin 300072 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dominant vanishing point; Feature line-segment proposal unit (FLPU); Natural scenes; MobileNet v2; YOLO;

    机译:主导消失点;特征线段提案单元(FLPU);自然场景;MobileNet v2;YOLO;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号