首页> 外文期刊>Neurocomputing >A deep neural network for real-time detection of falling humans in naturally occurring scenes
【24h】

A deep neural network for real-time detection of falling humans in naturally occurring scenes

机译:一个深度神经网络,用于实时检测自然场景中坠落的人

获取原文
获取原文并翻译 | 示例

摘要

We introduce a novel approach to the problem of human fall detection in naturally occurring scenes. This is important because falling incidents cause thousands of deaths every year and vision-based approaches offer a promising and effective way to detect falls. To address this challenging issue, we regard it as an example of action detection and propose to also locate its temporal extent. We achieve this by exploiting the effectiveness of deep networks. In the training stage, the trimmed video clips of four phases (standing, falling, fallen and not moving) in a fall are converted to four categories of so-called dynamic image to train a deep ConvNet that scores and predicts the label of each dynamic image. In the testing stage, a set of sub-videos is generated using a sliding window on an untrimmed video that converts it to multiple dynamic images. Based on the predicted label of each dynamic image by the trained deep ConvNet, the videos are classified as falling or not by a "standing watch" for a situation consisting of the four sequential phases. In order to localize the temporal extent of the event, we propose a difference score method (DSM) based on adjacent dynamic images in the temporal sequence. We collect a new dataset, called the YouTube Fall Dataset (YTFD), which contains 430 falling incidents and 176 normal activities and use it to learn the deep network to detect falling humans. We perform experiments on datasets of varying complexity: Le2i fall detection dataset, multiple cameras fall dataset, high quality fall simulation dataset and our own YouTube Fall Dataset. The results demonstrate the effectiveness and efficiency of our approach. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们介绍一种新颖的方法来解决自然场景中的人体跌倒检测问题。这很重要,因为跌倒事件每年会导致数千人死亡,而基于视觉的方法提供了一种有希望且有效的检测跌倒的方法。为了解决这个具有挑战性的问题,我们将其视为动作检测的一个示例,并建议也定位其时间范围。我们通过利用深度网络的有效性来实现这一目标。在训练阶段,将秋天的四个阶段(站立,跌倒,跌倒和不动)修剪的视频片段转换为四类所谓的动态图像,以训练一个深层的ConvNet,该得分对并预测每个动态的标签图片。在测试阶段,使用未修饰视频上的滑动窗口生成一组子视频,将其转换为多个动态图像。根据训练有素的ConvNet对每个动态图像的预测标签,对于由四个连续阶段组成的情况,视频由“站立式”分类为是否掉落。为了定位事件的时间范围,我们提出了一种基于时间序列中相邻动态图像的差异评分方法(DSM)。我们收集了一个名为YouTube坠落数据集(YTFD)的新数据集,其中包含430个坠落事件和176次正常活动,并使用它来学习深度网络来检测坠落的人类。我们对各种复杂程度的数据集进行实验:Le2i跌倒检测数据集,多个摄像机跌倒数据集,高质量的跌倒模拟数据集和我们自己的YouTube跌落数据集。结果证明了我们方法的有效性和效率。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第18期|43-58|共16页
  • 作者单位

    Natl Univ Def Technol, Sci & Technol Automat Target Recognit Lab ATR, Changsha, Hunan, Peoples R China;

    McGill Univ, Ctr Intelligent Machines, Dept Elect & Comp Engn, 3480 Univ St, Montreal, PQ, Canada;

    Natl Univ Def Technol, Sci & Technol Automat Target Recognit Lab ATR, Changsha, Hunan, Peoples R China;

    Natl Univ Def Technol, Sci & Technol Automat Target Recognit Lab ATR, Changsha, Hunan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fall detection; Action detection; Temporal location; Dynamic image; Convolutional neural network; Deep learning;

    机译:跌倒检测;动作检测;时间位置;动态图像;卷积神经网络;深度学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号