首页> 外文期刊>Neurocomputing >Exsavi: Excavating both sample-wise and view-wise relationships to boost multi-view subspace clustering
【24h】

Exsavi: Excavating both sample-wise and view-wise relationships to boost multi-view subspace clustering

机译:exsavi:挖掘样本方面和观众关系,以提高多视图子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Multi-view clustering aims to partition objects based on multiple views through unsupervised learning. To exploit cross-view information, recent advances have shifted the focus from matrix-based to tensorbased subspace learning. Though, both approaches leverage the subspace representation of the data, further higher-order statistics extraction is often overlooked. To tackle the issue, in this paper, a novel multiview clustering method is proposed to extract both intrinsic sample-wise and view-wise statistics from multi-view data. The multi-view data is represented in tensor form and mapped into a latent tensor subspace to exploit its sample-wise relationship. Through using multi-dimensional sparse coding in its similarity tensor, the view-wise relationship is exploited and evacuated. The two relationships are jointly learned and a latent clustering structure is essentially captured in a data-driven way. We conducted extensive experiments on face, object, digital ima ge, and text datasets and compared with ten stateof-the-art methods. The experimental results demonstrated that the proposed method, named as Exsavi, outperform the baselines in terms of various evaluation metrics. (c) 2020 Published by Elsevier B.V.
机译:多视图群集旨在通过无监督的学习基于多个视图进行分区对象。为了利用跨视图信息,最近的进步已经将焦点从基于矩阵的子空间学习转移。虽然,两种方法都利用了数据的子空间表示,往往忽略了进一步的高阶统计提取。为了解决问题,本文提出了一种新的多视图聚类方法,从多视图数据中提取内部样本和观众统计。多视图数据以张量形式表示,并映射到潜在的张量子空间中以利用其采样方面的关系。通过在其相似度张量中使用多维稀疏编码,利用视图关系和疏散。共同学习两种关系,并且基本上以数据驱动方式捕获潜在聚类结构。我们对面部,对象,数字IMA GE和文本数据集进行了广泛的实验,并与最新的方法进行了比较。实验结果表明,在各种评估指标方面,所提出的方法被命名为Exsavi,优于基线。 (c)2020由elsevier b.v发布。

著录项

  • 来源
    《Neurocomputing》 |2020年第22期|66-78|共13页
  • 作者单位

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China|Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou 510006 Peoples R China|Kyoto Univ Inst Chem Res Bioinformat Ctr Kyoto Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-view learning; Clustering; Representation learning; Tensor subspace analysis;

    机译:多视图学习;聚类;代表学习;张量子空间分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号