首页> 外文期刊>Expert systems with applications >Joint representation learning for multi-view subspace clustering
【24h】

Joint representation learning for multi-view subspace clustering

机译:多视图子空间聚类的联合表示学习

获取原文
获取原文并翻译 | 示例

摘要

Multi-view subspace clustering has made remarkable achievements in the field of multi-view learning for high-dimensional data. However, many existing multi-view subspace clustering methods still have two disadvantages. First, most of them only recover the subspace structure from either consistent or specific perspective. Second, they often fail to take advantage of the high-order information among different views. To alleviate these two issues, this paper proposes a novel multi-view subspace clustering method, which aims to learn the view-specific representation as well as the low-rank tensor representation in a unified framework. Particularly, our method learns the view-specific representation from data samples by exploiting the local structure within each view. In the meantime, we generate the low-rank tensor representation from the view-specific representation to capture the high-order correlation across multiple views. Based on the joint representation learning framework, the proposed method is able to explore the intra-view pairwise information and the inter-view complementary information, so that the underlying data structure can be revealed and then the final clustering result can be obtained through the subsequent spectral clustering. Furthermore, in the proposed Joint Representation Learning for Multi-view Subspace Clustering (JRL-MSC) method, a unified objective function is formulated, which can be efficiently optimized by the alternating direction method of multipliers. Experimental results on multiple real-world data sets have demonstrated that our method outperforms the state-of-the-art counterparts.
机译:多视图子空间群集在高维数据的多视图学习领域取得了显着成就。但是,许多现有的多视图子空间聚类方法仍有两个缺点。首先,其中大多数只能从一致或特定的角度恢复子空间结构。其次,他们经常无法利用不同视图之间的高阶信息。为了缓解这两个问题,本文提出了一种新的多视图子空间聚类方法,旨在学习特定于观点的表示以及统一框架中的低级张量表示。特别是,我们的方法通过在每个视图中利用本地结构来了解数据样本的特定于视图表示。同时,我们从观点特定表示生成低级张量表示,以捕获跨多个视图的高阶相关性。基于联合表示学习框架,所提出的方法能够探索视图内部的成对信息和视图间互补信息,从而可以揭示底层数据结构,然后可以通过随后获得最终的聚类结果光谱聚类。此外,在用于多视图子空间聚类(JRL-MSC)方法的提出的关节表示学习中,配制了统一的目标函数,可以通过乘法器的交替方向方法有效地优化。多次现实数据集的实验结果表明,我们的方法优于最先进的同行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号