首页> 外文期刊>Neurocomputing >Cross-environment activity recognition using word embeddings for sensor and activity representation
【24h】

Cross-environment activity recognition using word embeddings for sensor and activity representation

机译:使用Word Embeddings进行传感器和活动表示的跨环境活动识别

获取原文
获取原文并翻译 | 示例

摘要

Cross-environment activity recognition in smart homes is a very challenging problem, specially for data-driven approaches. Currently, systems developed to work for a certain environment degrade substantially when applied to a new environment, where not only sensors, but also the monitored activities may be different. Some systems require manual labeling and mapping of the new sensor names and activities using an ontology. Ideally, given a new smart home, we would like to be able to deploy the system, which has been trained on other sources, with minimal manual effort and with acceptable performance. In this paper, we propose the use of neural word embeddings to represent sensor activations and activities, which comes with several advantages: (i) the representation of the semantic information of sensor and activity names, and (ii) automatically mapping sensors and activities of different environments into the same semantic space. Based on this novel representation approach, we propose two data-driven activity recognition systems: the first one is a completely unsupervised system based on embedding similarities, while the second one adds a supervised learning regressor on top of them. We compare our approaches with some baselines using four public datasets, showing that data-driven cross-environment activity recognition obtains good results even when sensors and activity labels significantly differ. Our results show promise for reducing manual effort, and are complementary to other efforts using ontologies. (C) 2020 Elsevier B.V. All rights reserved.
机译:智能家庭中的交叉环境活动识别是一个非常具有挑战性的问题,专门用于数据驱动的方法。目前,在适用于新环境时,开发用于某种环境的系统将基本上降低,不仅传感器,而且监测的活动也可能不同。一些系统需要使用本体进行手动标记和映射新的传感器名称和活动。理想情况下,鉴于一个新的智能家庭,我们希望能够部署系统,这些系统已接受其他来源,具有最小的手动努力和可接受的性能。在本文中,我们提出了使用神经单词嵌入来表示传感器激活和活动,这具有几个优点:(i)传感器和活动名称的语义信息的表示,(ii)自动映射传感器和活动不同的环境进入同一语义空间。基于这种新颖的表示方法,我们提出了两个数据驱动的活动识别系统:第一个是基于嵌入式相似之处的完全无监督的系统,而第二个是一个完全无监督的系统,而第二个是在其中的顶部增加了监督学习回归。我们使用四个公共数据集比较了我们的一些基线的方法,表明数据驱动的跨环境活动识别即使传感器和活动标签显着差异,也可以获得良好的结果。我们的结果表明承诺减少手动努力,并与使用本体的其他努力进行互补。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号