首页> 外文期刊>Neurocomputing >Automatic cardiac MRI segmentation and permutation-invariant pathology classification using deep neural networks and point clouds
【24h】

Automatic cardiac MRI segmentation and permutation-invariant pathology classification using deep neural networks and point clouds

机译:使用深神经网络和点云进行自动心脏MRI分割和置换不变的病理分类

获取原文
获取原文并翻译 | 示例

摘要

Segmentation of cardiac MRI images plays a key role in clinical diagnosis. In the traditional diagnostic process, clinical experts manually segment left ventricle (LV), right ventricle (RV) and myocardium (Myo) to get the guideline for cardiopathy diagnosis. However, manual segmentation is time-consuming and labor-intensive. In this paper, we propose automatic cardiac MRI segmentation and cardiopathy classification based on deep neural networks and point clouds. The cardiac MRI segmentation consists of two steps: (i) We use a detector based on you only look once (YOLO) to obtain region of interest (ROI) from the sequential diastolic and systolic MRI. (ii) We obtain the segmentation masks from the ROI automatically by a fully convolutional neural network (FCN). Subsequently, we reconstruct 3D surfaces by a simple linear interpolation method, then randomly sample uniform 3D point clouds from the 3D surfaces. From the cardiac point clouds, we perform cardiopathy classification using a cardiopathy diagnosis network (CDN). Experimental results show that the proposed method successfully segments LV, RV, and Myo from cardiac MRI images and achieves comparable results against several existing ones. Moreover, the CDN successfully classifies heart diseases based on point clouds and achieves 92% accuracy on the testing dataset. (C) 2020 Elsevier B.V. All rights reserved.
机译:心脏MRI图像的分割在临床诊断中发挥着关键作用。在传统的诊断过程中,手动临床专家手动分段左心室(LV),右心室(RV)和心肌(MYO)以获得心脏病诊断的指导。但是,手动分割是耗时和劳动密集型的。在本文中,我们提出了基于深神经网络和点云的自动心脏MRI分割和心脏病分类。心脏MRI分割包括两个步骤:(i)我们使用探测器仅基于您只看一次(YOLO),从而从顺序舒张和收缩MRI获得感兴趣区域(ROI)。 (ii)我们通过完全卷积神经网络(FCN)自动获得来自投资回报率的分割掩模。随后,通过简单的线性插值方法重建3D表面,然后从3D表面随机采样均匀的3D点云。从心脏点云,我们使用心脏病诊断网络(CDN)进行心脏病分类。实验结果表明,该方法成功地将LV,RV和MyO从心脏MRI图像进行了分离,并从而实现了几个现有的结果。此外,CDN成功地基于点云对心脏病分类,并在测试数据集中实现了92%的准确性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号