首页> 外文期刊>Neurocomputing >Global dynamics and learning algorithm of non-autonomous neural networks with time-varying delays
【24h】

Global dynamics and learning algorithm of non-autonomous neural networks with time-varying delays

机译:具有时变延迟的非自治神经网络的全局动态与学习算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a class of non-autonomous neural networks with time-varying delays is considered. By using a new differential inequality and M-matrix, we investigate the positive invariant set and global attracting set of the networks without the assumption on boundedness of time delays or system coefficients. On this basis, we obtain sufficient conditions on the uniformly boundedness, the existence of periodic attractor and give its existence range for periodic neural networks. Furthermore, we offer a weight learning algorithms to ensure input-to-state stability, and give the state estimate and attracting set for the system. Our results can extend and improve earlier ones. Some examples and simulations are given to demonstrate the effectiveness of the obtained results. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,考虑了一类具有时变延迟的非自主神经网络。通过使用新的差分不等式和M矩阵,我们调查了网络的正不变量集和全局吸引集,而无需对时间延迟或系统系数的有界性的假设。在此基础上,我们在均匀界限的情况下获得足够的条件,周期性吸引子的存在,并为周期性网络提供其存在范围。此外,我们提供重量学习算法,以确保输入到状态稳定性,并为系统提供状态估计和吸引集。我们的结果可以延伸和改进先前。给出了一些实例和模拟来证明所得结果的有效性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号