首页> 外文期刊>Neurocomputing >Detecting community structure and structural hole spanner simultaneously by using graph convolutional network based Auto-Encoder
【24h】

Detecting community structure and structural hole spanner simultaneously by using graph convolutional network based Auto-Encoder

机译:基于Graph卷积网络的自动编码器同​​时检测社区结构和结构孔扳手

获取原文
获取原文并翻译 | 示例

摘要

Both Community and Structural Hole (SH) Spanner Detection are significant research tasks in social network analysis. Due to the close topological relevance between communities and structure hole spanners, the two tasks can work out synchronously, but most studies address the two tasks independently. In recent years, deep learning has been applied in the field of community detection. However, so far no deep learning model can solve both community and SH detection at the same framework. In this paper, we first analyze why a previous model named Harmony Modularity (HAM) can working for joint community and SH spanners detection task, which is the only one previous work that solve two task synchronously. Then we discuss the deficiency of HAM. For purpose of overcoming the shortcoming of HAM, we propose a deep learning model for finding both communities and structural holes simultaneously. Because the main framework used in our model is graph convolutional neural network based Auto-Encoder, we shorten it for ComSHAE. Specifically, ComSHAE learn the eigenvectors of weighted Spectral Ratio-Cut Partitioning and the nonlinear representation of adjacent matrix. We infer the community assignments and top-k SH spanners from eigenvectors. Extensive experimental results on synthetic and real networks show that our model outperform the baseline HAM and some state-of-the-art methods. When compare ComSHAE with HAM on synthetic data, ComSHAE shows great effects but HAM can not work. We use Normalized Mutual Information (NMI) to measure performance on detecting communites. ComSHAE shows abort 0.05 NMI improvement than HAM on real data and abort 0.63 NMI improvement on synthetic data. We measure the cross-community transmission capacity through structural hole influence index (SHII). The SH spanners found by ComSHAE shows at lest 0.03 SHII improvement compared with SH detection methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:社区和结构孔(SH)扳手检测都是社交网络分析中的显着研究任务。由于社区和结构孔扳手之间的密切拓扑相关性,这两个任务可以同步地解决,但大多数研究独立地解决了两个任务。近年来,深入学习已应用于社区检测领域。但是,到目前为止,没有深度学习模型可以在同一框架上解决社区和SH检测。在本文中,我们首先分析了为什么先前模型命名的和谐模块(火腿)可以为联合社区和SH跨跨度检测任务工作,这是一个同步解决两个任务的唯一一个工作。然后我们讨论火腿的缺陷。为了克服火腿的缺点,我们提出了一种深入的学习模型,可以同时寻找社区和结构孔。由于我们模型中使用的主要框架是图形卷积神经网络的基于自动编码器,因此我们为Comshae缩短了它。具体而言,Comshae学习加权光谱比切割分区的特征向量和相邻矩阵的非线性表示。我们从特征向量中推断社区分配和Top-K Sh横跨。对合成和实际网络的广泛实验结果表明,我们的模型优于基线火腿和一些最先进的方法。当与综合性数据中的火腿与火腿进行比较时,Comshae显示出很大的效果,但火腿无法工作。我们使用标准化的互信息(NMI)来测量检测社会的性能。 Comshae在真实数据上显示比火腿的0.05 NMI改善,并在合成数据中吸入0.63 NMI改进。我们通过结构孔影响指数(SHII)测量跨社区传输能力。与SH检测方法相比,Comshae发现的SH扳手以lest为0.03 shii改进。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号