首页> 外文期刊>Neurocomputing >Human action recognition using convolutional LSTM and fully-connected LSTM with different attentions
【24h】

Human action recognition using convolutional LSTM and fully-connected LSTM with different attentions

机译:使用卷积LSTM和完全连接的LSTM具有不同关注的人类行动识别

获取原文
获取原文并翻译 | 示例

摘要

This paper aims to address the human action recognition issue by using convolutional long short-term memory networks (Conv-LSTM) and fully-connected LSTM (FC-LSTM) with different attentions. To this end, the spatial-temporal dual-attention network (STDAN), which is mainly composed of feature extraction, attention and fusion modules, is designed. Different from the features of high-level fully-connected layer mostly used in previous work, the features of convolution and fully-connected layers of convolutional neural network (CNN) are both extracted in STDAN, which can enrich the initial level of video representation. Besides, the Conv-LSTM and FC-LSTM are employed to handle the long-duration sequential features with different temporal context information. To reinforce the spatial-temporal attention ability, a temporal attention module (TAM) and a joint spatial-temporal attention module (JSTAM) are implemented. Through the principle components analysis (PCA) and features fusion, the potential of STDAN is effectively explored and weighted. Finally, the experimental results show that the proposed STDAN has better recognition performance than existing state-of-the-art methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文旨在通过使用不同关注的卷积长短短期内存网络(CONN-LSTM)和完全连接的LSTM(FC-LSTM)来解决人类行动识别问题。为此,设计了由特征提取,关注和融合模块组成的空间 - 时间双关注网络(Stdan)。与以前的工作中主要使用的高电平全连接层的特征不同,卷积神经网络(CNN)的卷积和全连接层的特征均在STDAN中提取,可以丰富视频表示的初始级别。此外,使用CONV-LSTM和FC-LSTM来处理具有不同时间上下文信息的长持续时间顺序特征。为了加强空间关注能力,实现了临时注意力模块(TAM)和关节空间 - 时间注意模块(JSTAM)。通过原理分析分析(PCA)和特征融合,有效探索和加权斯顿的潜力。最后,实验结果表明,所提出的斯特兰具有比现有最先进的方法更好的识别性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第14期|304-316|共13页
  • 作者单位

    Chongqing Univ Posts & Telecommun Sch Commun & Informat Engn Chongqing 400065 Peoples R China|Chongqing Key Lab Mobile Commun Technol Chongqing 400065 Peoples R China|Minist Educ Engn Res Ctr Mobile Commun Chongqing 400065 Peoples R China;

    Chongqing Univ Posts & Telecommun Sch Commun & Informat Engn Chongqing 400065 Peoples R China|Chongqing Key Lab Mobile Commun Technol Chongqing 400065 Peoples R China|Minist Educ Engn Res Ctr Mobile Commun Chongqing 400065 Peoples R China;

    Chongqing Univ Posts & Telecommun Sch Commun & Informat Engn Chongqing 400065 Peoples R China|Chongqing Key Lab Mobile Commun Technol Chongqing 400065 Peoples R China|Minist Educ Engn Res Ctr Mobile Commun Chongqing 400065 Peoples R China;

    Chongqing Univ Posts & Telecommun Sch Cyber Secur & Informat Law Chongqing 400065 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Human action recognition; Convolutional LSTM; Fully-connected LSTM; Spatial-temporal attention; Principle components analysis; Feature fusion;

    机译:人类行动识别;卷积LSTM;完全连接的LSTM;空间关注;原理成分分析;特征融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号