首页> 中文期刊> 《计算机应用与软件》 >基于多核卷积融合网络的BLSTM-CTC语音识别

基于多核卷积融合网络的BLSTM-CTC语音识别

     

摘要

语音信号在传播过程中会产生持续时长不等的音素特征,这些特征会影响语音识别的正确率.针对这一问题,提出一种多核卷积融合网络(Multi-core Convolution Fusion Network,MCFN),用于对不同长度的音素特征进行标准化,用标准化后的特征训练语音识别模型.此外,还利用子空间高斯混合模型(Subspace Gaussian Mixture Model,SGMM)将一般说话者的语音和信息加入到模型中,减小语料稀疏性对模型的影响.通过在Thchs30和ST-CMDS数据集对模型进行评估,结果显示,基于MCFN的BLSTM-CTC语音识别模型的识别字错误率(WER)较传统的语音识别模型有所降低.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号