首页> 外文期刊>Neurocomputing >Character-level neural network model based on Nadam optimization and its application in clinical concept extraction
【24h】

Character-level neural network model based on Nadam optimization and its application in clinical concept extraction

机译:基于NADAM优化的字符级神经网络模型及其在临床概念提取中的应用

获取原文
获取原文并翻译 | 示例

摘要

Clinical concept extraction aims to quickly and effectively extract available data from complex and diverse clinical information, which is a crucial task for medical diagnosis using electronic medical records. Named entity recognition (NER) accurately marks essential information in clinical records based on the characteristics of the target entity, providing a way to extract clinical concepts. In the clinical concept extraction task, the existing methods are not satisfactory to obtain accurate labelling results in the face of large-scale and complex clinical information. To solve this problem, we improve and optimize a named entity recognition method based on the LSTM-CRF model. First, the improved deep neural network model uses two optional configurations of Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BLSTM) to achieve character-level representation. Then the BLSTM layer obtains the context information of the target word, and the Conditional Random Field (CRF) gives constraints to ensure the standardization of the label. On this basis, Nadam is used to optimize the training process of the network. The experimental results show that our new method has an F1 score of 84.61 on the public dataset of 2010 i2b2/VA concept extraction task, which exceeds the LSTM-CRF model. And the recall of 85.41 is ahead of all the methods evaluated on this data set. (C) 2020 Elsevier B.V. All rights reserved.
机译:临床概念提取旨在快速有效地从复杂和多样的临床信息中提取可用数据,这是使用电子医疗记录进行医学诊断的关键任务。根据目标实体的特征,命名实体识别(ner)准确地标记临床记录中的基本信息,提供了提取临床概念的方法。在临床概念提取任务中,现有方法不令人满意地在大规模和复杂的临床信息面前获得准确的标记结果。为了解决这个问题,我们改进并优化了基于LSTM-CRF模型的命名实体识别方法。首先,改进的深度神经网络模型使用卷积神经网络(CNN)和双向长期短期存储器(BLSTM)的两个可选配置来实现字符级表示。然后,BLSTM层获取目标字的上下文信息,条件随机字段(CRF)提供约束,以确保标签的标准化。在此基础上,NADAM用于优化网络的培训过程。实验结果表明,我们的新方法在2010 I2B2 / VA概念提取任务的公共数据集中具有84.61的F1得分,超过LSTM-CRF模型。并且85.41的召回领先于此数据集上评估的所有方法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第13期|182-190|共9页
  • 作者

    Li Lantian; Xu Weizhi; Yu Hui;

  • 作者单位

    Shandong Normal Univ Sch Informat Sci & Engn Jinan 250358 Peoples R China;

    Shandong Normal Univ Sch Informat Sci & Engn Jinan 250358 Peoples R China|State Key Lab High End Server & Storage Technol Jinan 250101 Peoples R China;

    Shandong Normal Univ Business Sch Jinan 250358 Peoples R China|State Key Lab High End Server & Storage Technol Jinan 250101 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep neural networks; Natural language processing; Clinical concept extraction; Named entity recognition;

    机译:深度神经网络;自然语言处理;临床概念提取;命名实体识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号