首页> 外文会议>2nd workshop on representation learing for NLP 2017 >Representing Compositionality based on Multiple Timescales Gated Recurrent Neural Networks with Adaptive Temporal Hierarchy for Character-Level Language Models
【24h】

Representing Compositionality based on Multiple Timescales Gated Recurrent Neural Networks with Adaptive Temporal Hierarchy for Character-Level Language Models

机译:基于多时标门控递归神经网络的字符级语言模型的自适应时态层次表示组合性

获取原文
获取原文并翻译 | 示例

摘要

A novel character-level neural language model is proposed in this paper. The proposed model incorporates a biologically inspired temporal hierarchy in the architecture for representing multiple compositions of language in order to handle longer sequences for the character-level language model. The temporal hierarchy is introduced in the language model by utilizing a Gated Recurrent Neural Network with multiple timescales. The proposed model incorporates a timescale adaptation mechanism for enhancing the performance of the language model. We evaluate our proposed model using the popular Penn Tree-bank and Text8 corpora. The experiments show that the use of multiple timescales in a Neural Language Model (NLM) enables improved performance despite having fewer parameters and with no additional computation requirements. Our experiments also demonstrate the ability of the adaptive temporal hierarchies to represent multiple compositonality without the help of complex hierarchical architectures and shows that better representation of the longer sequences lead to enhanced performance of the probabilistic language model.
机译:提出了一种新颖的字符级神经语言模型。所提出的模型在体系结构中引入了生物学启发的时间层次结构,用于表示语言的多种成分,以便为字符级语言模型处理更长的序列。通过使用具有多个时标的门控递归神经网络,在语言模型中引入了时间层次。所提出的模型并入了一种时标适应机制,以增强语言模型的性能。我们使用流行的Penn树库和Text8语料库评估我们提出的模型。实验表明,在神经语言模型(NLM)中使用多个时标可以提高性能,尽管参数较少且没有其他计算要求。我们的实验还证明了在不借助复杂层次结构的情况下,自适应时间层次结构能够表示多种组合的能力,并表明更好地表示较长的序列会提高概率语言模型的性能。

著录项

  • 来源
  • 会议地点 Vancouver(CA)
  • 作者单位

    School of Electronics Engineering Kyungpook National University Daegu, South Korea;

    School of Electronics Engineering Kyungpook National University Daegu, South Korea;

    School of Electronics Engineering Kyungpook National University Daegu, South Korea;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号